-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_dy.py
453 lines (351 loc) · 17.5 KB
/
train_dy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import os
import random
import itertools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from progressbar import ProgressBar
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from torch.distributions.multivariate_normal import MultivariateNormal
from config import gen_args
from data import PhysicsDataset, load_data
from models_kp import KeyPointNet
from models_dy import DynaNetGNN, HLoss
from utils import rand_int, count_parameters, Tee, AverageMeter, get_lr, to_np, set_seed
args = gen_args()
set_seed(args.random_seed)
torch.manual_seed(args.random_seed)
np.random.seed(args.random_seed)
os.system('mkdir -p ' + args.outf_kp)
os.system('mkdir -p ' + args.dataf)
if args.stage == 'dy':
os.system('mkdir -p ' + args.outf_dy)
tee = Tee(os.path.join(args.outf_dy, 'train.log'), 'w')
else:
raise AssertionError("Unsupported env %s" % args.stage)
print(args)
# generate data
trans_to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
datasets = {}
dataloaders = {}
data_n_batches = {}
for phase in ['train', 'valid']:
datasets[phase] = PhysicsDataset(args, phase=phase, trans_to_tensor=trans_to_tensor)
if args.gen_data:
datasets[phase].gen_data()
else:
datasets[phase].load_data()
dataloaders[phase] = DataLoader(
datasets[phase], batch_size=args.batch_size,
shuffle=True if phase == 'train' else False,
num_workers=args.num_workers)
data_n_batches[phase] = len(dataloaders[phase])
args.stat = datasets['train'].stat
use_gpu = torch.cuda.is_available()
'''
define model for keypoint detection
'''
model_kp = KeyPointNet(args, use_gpu=use_gpu)
print("model_kp #params: %d" % count_parameters(model_kp))
# load pretrained checkpoint
model_kp_path = os.path.join(
args.outf_kp, 'net_kp_epoch_%d_iter_%d.pth' % (args.kp_epoch, args.kp_iter))
print("Loading saved ckp for keypointnet from %s" % model_kp_path)
model_kp.load_state_dict(torch.load(model_kp_path))
'''
define model for dynamics prediction
'''
if args.stage == 'dy':
if args.dy_model == 'gnn':
model_dy = DynaNetGNN(args, use_gpu=use_gpu)
else:
raise AssertionError("Unknown dy_model %s" % args.dy_model)
print("model_dy #params: %d" % count_parameters(model_dy))
if args.dy_epoch >= 0:
# if resume from a pretrained checkpoint
model_dy_path = os.path.join(
args.outf_dy, 'net_dy_epoch_%d_iter_%d.pth' % (args.dy_epoch, args.dy_iter))
print("Loading saved ckp for dynamics net from %s" % model_dy_path)
model_dy.load_state_dict(torch.load(model_dy_path))
else:
raise AssertionError("Unknown stage %s" % args.stage)
# criterion
criterionMSE = nn.MSELoss()
criterionH = HLoss()
# optimizer
if args.stage == 'dy':
params = model_dy.parameters()
else:
raise AssertionError('Unknown stage %s' % args.stage)
optimizer = optim.Adam(params, lr=args.lr, betas=(args.beta1, 0.999))
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.6, patience=2, verbose=True)
if use_gpu:
model_kp = model_kp.cuda()
criterionMSE = criterionMSE.cuda()
if args.stage == 'dy':
model_dy = model_dy.cuda()
else:
raise AssertionError("Unknown stage %s" % args.stage)
if args.stage == 'dy':
st_epoch = args.dy_epoch if args.dy_epoch > 0 else 0
log_fout = open(os.path.join(args.outf_dy, 'log_st_epoch_%d.txt' % st_epoch), 'w')
else:
raise AssertionError("Unknown stage %s" % args.stage)
best_valid_loss = np.inf
for epoch in range(st_epoch, args.n_epoch):
phases = ['train', 'valid'] if args.eval == 0 else ['valid']
for phase in phases:
model_kp.train(phase == 'train')
meter_loss = AverageMeter()
meter_loss_contras = AverageMeter()
if args.stage == 'dy':
model_dy.train(phase == 'train')
meter_loss_rmse = AverageMeter()
meter_loss_kp = AverageMeter()
meter_loss_H = AverageMeter()
meter_acc = AverageMeter()
meter_cor = AverageMeter()
meter_num_edge_per_type = np.zeros(args.edge_type_num)
bar = ProgressBar(max_value=data_n_batches[phase])
loader = dataloaders[phase]
for i, data in bar(enumerate(loader)):
if use_gpu:
if isinstance(data, list):
# nested transform
data = [[d.cuda() for d in dd] if isinstance(dd, list) else dd.cuda() for dd in data]
else:
data = data.cuda()
with torch.set_grad_enabled(phase == 'train'):
if args.stage == 'dy':
'''
hyperparameter on the length of data
'''
n_his, n_kp = args.n_his, args.n_kp
n_samples = args.n_identify + args.n_his + args.n_roll
n_identify = args.n_identify
'''
load data
'''
if args.env in ['Ball']:
# if using detected keypoints
if args.preload_kp == 1:
# if using preloaded keypoints
kps_preload, kps_gt, graph_gt = data[:3]
else:
# if detect keypoints during runtime
imgs, kps_gt, graph_gt = data[:3]
B, _, H, W = imgs.size()
imgs = imgs.view(B, n_samples, 3, H, W)
imgs_id, imgs_dy = imgs[:, :n_identify], imgs[:, n_identify:]
actions = data[-1]
B = kps_gt.size(0)
elif args.env in ['Cloth']:
if args.preload_kp == 1:
# if using preloaded keypoints
kps_preload, actions = data
else:
imgs, actions = data
kps_gt = None
B = actions.size(0)
'''
get detected keypoints -- kps
'''
# kps: B x (n_identify + n_his + n_roll) x n_kp x 2
if args.preload_kp == 1:
kps = kps_preload
else:
kps = model_kp.predict_keypoint(imgs.view(-1, 3, H, W)).view(
B, n_samples, n_kp, 2)
# Permute the keypoints to make sure the calculation of
# edge accuracy is correct.
if i == 0:
permu_node_idx = np.arange(args.n_kp)
if args.env in ['Ball']:
permu_node_list = list(itertools.permutations(np.arange(args.n_kp)))
permu_node_error = np.inf
permu_node_idx = None
for ii in permu_node_list:
p = np.array(ii)
kps_permuted = kps[:, :, p]
error = torch.mean((kps_permuted - kps_gt)**2).item()
if error < permu_node_error:
permu_node_error = error
permu_node_idx = p
# permu_node_idx = np.array([2, 1, 0, 4, 3])
print()
print('Selected node permutation', permu_node_idx)
kps = kps[:, :, permu_node_idx]
kps = kps.view(B, n_samples, n_kp, 2)
kps_id, kps_dy = kps[:, :n_identify], kps[:, n_identify:]
# only train dynamics module
kps = kps.detach()
if actions is not None:
actions_id, actions_dy = actions[:, :n_identify], actions[:, n_identify:]
else:
actions_id, actions_dy = None, None
'''
step #1: identify the dynamics graph
'''
if args.env in ['Ball']:
# randomize the observation length
observe_length = rand_int(args.min_res, n_identify + 1)
if args.baseline == 1:
graph = model_dy.init_graph(
kps_id[:, :observe_length], use_gpu=True, hard=True)
else:
graph = model_dy.graph_inference(
kps_id[:, :observe_length], actions_id[:, :observe_length],
env=args.env)
# calculate edge calculation accuracy
# edge_attr: B x n_kp x n_kp x edge_attr_dim
# graph_gt:
# edge_type_gt: B x n_kp x n_kp x edge_type_num
# edge_attr_gt: B x n_kp x n_kp x edge_attr_dim
# edge_type_logits: B x n_kp x n_kp x edge_type_num
edge_attr, edge_type_logits = graph[1], graph[3]
edge_type_gt, edge_attr_gt = graph_gt
idx_gt = torch.argmax(edge_type_gt, dim=3)
idx_pred = torch.argmax(edge_type_logits, dim=3)
assert idx_gt.size() == torch.Size([B, n_kp, n_kp])
idx_gt = idx_gt.data.cpu().numpy()
idx_pred = idx_pred.data.cpu().numpy()
permu_edge_idx = None
permu_edge_acc = 0.
permu_edge_cor = 0.
if permu_edge_idx is None:
permu = list(itertools.permutations(np.arange(args.edge_type_num)))
edge_attr_np = to_np(edge_attr)
edge_attr_gt_np = to_np(edge_attr_gt)
for ii in permu:
p = np.array(ii)
idx_mapped = p[idx_gt]
acc = np.logical_and(idx_mapped == idx_pred, np.logical_not(np.eye(n_kp)))
acc = np.sum(acc) / (B * n_kp * (n_kp - 1))
if acc > permu_edge_acc:
permu_edge_acc = acc
permu_edge_idx = p
else:
idx_mapped = permu_edge_idx[idx_gt]
permu_edge_acc = np.logical_and(idx_mapped == idx_pred, np.logical_not(np.eye(n_kp)))
permu_edge_acc = np.sum(permu_edge_acc) / (B * n_kp * (n_kp - 1))
permu_edge_cor = np.corrcoef(
edge_attr_np.reshape(-1),
edge_attr_gt_np.reshape(-1))[0, 1]
elif args.env in ['Cloth']:
# randomize the observation length
observe_length = rand_int(args.min_res, n_identify + 1)
if args.baseline == 1:
graph = model_dy.init_graph(
kps_id[:, :observe_length], use_gpu=True, hard=True)
else:
graph = model_dy.graph_inference(
kps_id[:, :observe_length], actions_id[:, :observe_length], env=args.env)
# edge_attr: B x n_kp x n_kp x edge_attr_dim
# graph_gt:
# edge_type_gt: B x n_kp x n_kp x edge_type_num
# edge_attr_gt: B x n_kp x n_kp x edge_attr_dim
# edge_type_logits: B x n_kp x n_kp x edge_type_num
edge_attr, edge_type_logits = graph[1], graph[3]
idx_pred = torch.argmax(edge_type_logits, dim=3)
idx_pred = idx_pred.data.cpu().numpy()
# record the number of edges that belongs to a specific type
num_edge_per_type = np.zeros(args.edge_type_num)
for tt in range(args.edge_type_num):
num_edge_per_type[tt] = np.sum(idx_pred == tt)
meter_num_edge_per_type += num_edge_per_type
# step #2: dynamics prediction
eps = args.gauss_std
kp_cur = kps_dy[:, :n_his].view(B, n_his, n_kp, 2)
covar_gt = torch.FloatTensor(np.array([eps, 0., 0., eps])).cuda()
covar_gt = covar_gt.view(1, 1, 1, 4).repeat(B, n_his, n_kp, 1)
kp_cur = torch.cat([kp_cur, covar_gt], 3)
loss_kp = 0.
loss_mse = 0.
edge_type_logits = graph[3].view(-1, args.edge_type_num)
loss_H = -criterionH(edge_type_logits, args.prior)
for j in range(args.n_roll):
kp_des = kps_dy[:, n_his + j]
# predict the feat and hmap at the next time step
action_cur = actions_dy[:, j : j + n_his] if actions is not None else None
if args.dy_model == 'gnn':
# kp_pred: B x n_kp x 2
kp_pred = model_dy.dynam_prediction(kp_cur, graph, action_cur, env=args.env)
mean_cur, covar_cur = kp_pred[:, :, :2], kp_pred[:, :, 2:].view(B, n_kp, 2, 2)
mean_des, covar_des = kp_des, covar_gt[:, 0].view(B, n_kp, 2, 2)
m_cur = MultivariateNormal(mean_cur, scale_tril=covar_cur)
m_des = MultivariateNormal(mean_des, scale_tril=covar_des)
log_prob = (m_cur.log_prob(kp_des) - m_des.log_prob(kp_des)).mean()
# log_prob = m_cur.log_prob(kp_des).mean()
loss_kp_cur = -log_prob * args.lam_kp
# loss_kp_cur = criterionMSE(mean_cur, mean_des) * args.lam_kp
# print(criterionMSE(mean_cur, mean_des) * args.lam_kp)
loss_kp += loss_kp_cur / args.n_roll
loss_mse_cur = criterionMSE(mean_cur, mean_des)
loss_mse += loss_mse_cur / args.n_roll
# update feat_cur and hmap_cur
kp_cur = torch.cat([kp_cur[:, 1:], kp_pred.unsqueeze(1)], 1)
# summarize the losses
loss = loss_kp + loss_H
# update meter
meter_loss_rmse.update(np.sqrt(loss_mse.item()), B)
meter_loss_kp.update(loss_kp.item(), B)
meter_loss_H.update(loss_H.item(), B)
meter_loss.update(loss.item(), B)
if args.env in ['Ball']:
meter_acc.update(permu_edge_acc, B)
meter_cor.update(permu_edge_cor, B)
if phase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % args.log_per_iter == 0:
log = '%s [%d/%d][%d/%d] LR: %.6f' % (
phase, epoch, args.n_epoch, i, data_n_batches[phase],
get_lr(optimizer))
if args.stage == 'dy':
log += ', kp: %.6f (%.6f), H: %.6f (%.6f)' % (
loss_kp.item(), meter_loss_kp.avg,
loss_H.item(), meter_loss_H.avg)
log += ' [%d' % num_edge_per_type[0]
for tt in range(1, args.edge_type_num):
log += ', %d' % num_edge_per_type[tt]
log += ']'
log += ', rmse: %.6f (%.6f)' % (
np.sqrt(loss_mse.item()), meter_loss_rmse.avg)
if args.env in ['Ball']:
log += ', acc: %.4f (%.4f)' % (
permu_edge_acc, meter_acc.avg)
log += ' [%d' % permu_edge_idx[0]
for ii in permu_edge_idx[1:]:
log += ' %d' % ii
log += '], cor: %.4f (%.4f)' % (permu_edge_cor, meter_cor.avg)
print()
print(log)
log_fout.write(log + '\n')
log_fout.flush()
if phase == 'train' and i % args.ckp_per_iter == 0:
if args.stage == 'dy':
torch.save(model_dy.state_dict(), '%s/net_dy_epoch_%d_iter_%d.pth' % (args.outf_dy, epoch, i))
log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
phase, epoch, args.n_epoch, meter_loss.avg, best_valid_loss)
log += ', [%d' % meter_num_edge_per_type[0]
for tt in range(1, args.edge_type_num):
log += ', %d' % meter_num_edge_per_type[tt]
log += ']'
print(log)
log_fout.write(log + '\n')
log_fout.flush()
if phase == 'valid' and not args.eval:
scheduler.step(meter_loss.avg)
if meter_loss.avg < best_valid_loss:
best_valid_loss = meter_loss.avg
if args.stage == 'dy':
torch.save(model_dy.state_dict(), '%s/net_best_dy.pth' % (args.outf_dy))
log_fout.close()