-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path1_data.lua
214 lines (178 loc) · 7.24 KB
/
1_data.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
-- It's a good idea to run this script with the interactive mode:
-- $ th -i 1_data.lua
-- this will give you a Torch interpreter at the end, that you
-- can use to analyze/visualize the data you've just loaded.
--
-- Clement Farabet
----------------------------------------------------------------------
require 'torch' -- torch
require 'image' -- for color transforms
require 'nn' -- provides a normalization operator
----------------------------------------------------------------------
-- parse command line arguments
if not opt then
print '==> processing options'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Dataset Preprocessing')
cmd:text()
cmd:text('Options:')
cmd:option('-size', 'small', 'how many samples do we load: small | full | extra')
cmd:option('-visualize', true, 'visualize input data and weights during training')
cmd:text()
opt = cmd:parse(arg or {})
end
----------------------------------------------------------------------
train_file = 'train_32x32.t7'
test_file = 'test_32x32.t7'
extra_file = 'extra_32x32.t7'
----------------------------------------------------------------------
-- training/test size
if opt.size == 'extra' then
print '==> using extra training data'
trsize = 73257 + 531131
tesize = 26032
elseif opt.size == 'full' then
print '==> using regular, full training data'
trsize = 73257
tesize = 26032
elseif opt.size == 'small' then
print '==> using reduced training data, for fast experiments'
trsize = 10000
tesize = 2000
end
----------------------------------------------------------------------
print '==> loading dataset'
-- We load the dataset from disk, and re-arrange it to be compatible
-- with Torch's representation. Matlab uses a column-major representation,
-- Torch is row-major, so we just have to transpose the data.
-- Note: the data, in X, is 4-d: the 1st dim indexes the samples, the 2nd
-- dim indexes the color channels (RGB), and the last two dims index the
-- height and width of the samples.
loaded = torch.load(train_file,'ascii')
trainData = {
data = loaded.X:transpose(3,4),
labels = loaded.y[1],
size = function() return trsize end
}
-- If extra data is used, we load the extra file, and then
-- concatenate the two training sets.
-- Torch's slicing syntax can be a little bit frightening. I've
-- provided a little tutorial on this, in this same directory:
-- A_slicing.lua
if opt.size == 'extra' then
loaded = torch.load(extra_file,'ascii')
trdata = torch.Tensor(trsize,3,32,32)
trdata[{ {1,(#trainData.data)[1]} }] = trainData.data
trdata[{ {(#trainData.data)[1]+1,-1} }] = loaded.X:transpose(3,4)
trlabels = torch.Tensor(trsize)
trlabels[{ {1,(#trainData.labels)[1]} }] = trainData.labels
trlabels[{ {(#trainData.labels)[1]+1,-1} }] = loaded.y[1]
trainData = {
data = trdata,
labels = trlabels,
size = function() return trsize end
}
end
-- Finally we load the test data.
loaded = torch.load(test_file,'ascii')
testData = {
data = loaded.X:transpose(3,4),
labels = loaded.y[1],
size = function() return tesize end
}
----------------------------------------------------------------------
print '==> preprocessing data'
-- Preprocessing requires a floating point representation (the original
-- data is stored on bytes). Types can be easily converted in Torch,
-- in general by doing: dst = src:type('torch.TypeTensor'),
-- where Type=='Float','Double','Byte','Int',... Shortcuts are provided
-- for simplicity (float(),double(),cuda(),...):
trainData.data = trainData.data:float()
testData.data = testData.data:float()
-- We now preprocess the data. Preprocessing is crucial
-- when applying pretty much any kind of machine learning algorithm.
-- For natural images, we use several intuitive tricks:
-- + images are mapped into YUV space, to separate luminance information
-- from color information
-- + the luminance channel (Y) is locally normalized, using a contrastive
-- normalization operator: for each neighborhood, defined by a Gaussian
-- kernel, the mean is suppressed, and the standard deviation is normalized
-- to one.
-- + color channels are normalized globally, across the entire dataset;
-- as a result, each color component has 0-mean and 1-norm across the dataset.
-- Convert all images to YUV
print '==> preprocessing data: colorspace RGB -> YUV'
for i = 1,trainData:size() do
trainData.data[i] = image.rgb2yuv(trainData.data[i])
end
for i = 1,testData:size() do
testData.data[i] = image.rgb2yuv(testData.data[i])
end
-- Name channels for convenience
channels = {'y','u','v'}
-- Normalize each channel, and store mean/std
-- per channel. These values are important, as they are part of
-- the trainable parameters. At test time, test data will be normalized
-- using these values.
print '==> preprocessing data: normalize each feature (channel) globally'
mean = {}
std = {}
for i,channel in ipairs(channels) do
-- normalize each channel globally:
mean[i] = trainData.data[{ {},i,{},{} }]:mean()
std[i] = trainData.data[{ {},i,{},{} }]:std()
trainData.data[{ {},i,{},{} }]:add(-mean[i])
trainData.data[{ {},i,{},{} }]:div(std[i])
end
-- Normalize test data, using the training means/stds
for i,channel in ipairs(channels) do
-- normalize each channel globally:
testData.data[{ {},i,{},{} }]:add(-mean[i])
testData.data[{ {},i,{},{} }]:div(std[i])
end
-- Local normalization
print '==> preprocessing data: normalize all three channels locally'
-- Define the normalization neighborhood:
neighborhood = image.gaussian1D(13)
-- Define our local normalization operator (It is an actual nn module,
-- which could be inserted into a trainable model):
normalization = nn.SpatialContrastiveNormalization(1, neighborhood, 1):float()
-- Normalize all channels locally:
for c in ipairs(channels) do
for i = 1,trainData:size() do
trainData.data[{ i,{c},{},{} }] = normalization:forward(trainData.data[{ i,{c},{},{} }])
end
for i = 1,testData:size() do
testData.data[{ i,{c},{},{} }] = normalization:forward(testData.data[{ i,{c},{},{} }])
end
end
----------------------------------------------------------------------
print '==> verify statistics'
-- It's always good practice to verify that data is properly
-- normalized.
for i,channel in ipairs(channels) do
trainMean = trainData.data[{ {},i }]:mean()
trainStd = trainData.data[{ {},i }]:std()
testMean = testData.data[{ {},i }]:mean()
testStd = testData.data[{ {},i }]:std()
print('training data, '..channel..'-channel, mean: ' .. trainMean)
print('training data, '..channel..'-channel, standard deviation: ' .. trainStd)
print('test data, '..channel..'-channel, mean: ' .. testMean)
print('test data, '..channel..'-channel, standard deviation: ' .. testStd)
end
----------------------------------------------------------------------
print '==> visualizing data'
-- Visualization is quite easy, using itorch.image().
if opt.visualize then
if itorch then
first256Samples_y = trainData.data[{ {1,256},1 }]
first256Samples_u = trainData.data[{ {1,256},2 }]
first256Samples_v = trainData.data[{ {1,256},3 }]
itorch.image(first256Samples_y)
itorch.image(first256Samples_u)
itorch.image(first256Samples_v)
else
print("For visualization, run this script in an itorch notebook")
end
end