forked from mholla/hitchhikers-guide-to-abaqus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathto_do.tex
407 lines (376 loc) · 23.6 KB
/
to_do.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
% \chapter{Tensor Operations in Voigt and Mandel Notation}
% When utilizing the symmetry of tensors to reduce their order, several notations can be used. This is necessary because certain elements appear twice in the original tensors, but only once in the reduced-order versions; thus a factor of 2 must be employed at some point to take this change into account.
% In Abaqus, the factor of 2 is placed in the strain vector:
% \begin{equation}
% \ten{\varepsilon} = \left[ \begin{array}{ccc}
% \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
% \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
% \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
% \end{array} \right]
% = \left[ \varepsilon_{11} ,\, \varepsilon_{22} ,\, \varepsilon_{33} ,\, 2 \varepsilon_{12} ,\, 2 \varepsilon_{13} ,\, 2 \varepsilon_{23} \right]
% = \left[ \varepsilon_{1} ,\, \varepsilon_{2} ,\, \varepsilon_{3} ,\, \varepsilon_{4} ,\, \varepsilon_{5} ,\, \varepsilon_{6} \right]
% \label{VoigtStrain}
% \end{equation}
% while the stress vector is not changed:
% \begin{equation}
% \ten{\sigma} = \left[ \begin{array}{ccc}
% \sigma_{11} & \sigma_{12} & \sigma_{13} \\
% \sigma_{21} & \sigma_{22} & \sigma_{23} \\
% \sigma_{31} & \sigma_{32} & \sigma_{33}
% \end{array} \right]
% = \left[ \sigma_{11} ,\, \sigma_{22} ,\, \sigma_{33} ,\, \sigma_{12} ,\, \sigma_{13} ,\, \sigma_{23} \right]
% = \left[ \sigma_{1} ,\, \sigma_{2} ,\, \sigma_{3} ,\, \sigma_{4} ,\, \sigma_{5} ,\, \sigma_{6} \right]
% \label{VoigtStress}
% \end{equation}
% Fourth-order tensors are represented as $6x6$ matrices. In Voigt notation, the tensor is unchanged by prefactors:
% \begin{equation}
% \left[ \begin{array}{cccccc}
% C_{1111} & C_{1122} & C_{1133} & C_{1112} & C_{1113} & C_{1123} \\
% C_{2211} & C_{2222} & C_{2233} & C_{2212} & C_{2213} & C_{2223} \\
% C_{3311} & C_{3322} & C_{3333} & C_{3312} & C_{3313} & C_{3323} \\
% C_{1211} & C_{1222} & C_{1233} & C_{1212} & C_{1213} & C_{1223} \\
% C_{1311} & C_{1322} & C_{1333} & C_{1312} & C_{1313} & C_{1323} \\
% C_{2311} & C_{2322} & C_{2333} & C_{2312} & C_{2313} & C_{2323}
% \end{array} \right]
% \label{VoigtMatrix}
% \end{equation}
% An alternate formulation (sometimes called Mandel notation) includes a factor of $\sqrt{2}$ in both the stress and strain vectors:
% \begin{equation}
% \ten{\varepsilon} = \left[ \begin{array}{ccc}
% \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
% \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
% \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
% \end{array} \right]
% = \left[ \varepsilon_{11} ,\, \varepsilon_{22} ,\, \varepsilon_{33} ,\, \sqrt{2} \varepsilon_{12} ,\, \sqrt{2} \varepsilon_{13} ,\, \sqrt{2} \varepsilon_{23} \right]
% = \left[ \varepsilon_{1} ,\, \varepsilon_{2} ,\, \varepsilon_{3} ,\, \varepsilon_{4} ,\, \varepsilon_{5} ,\, \varepsilon_{6} \right]
% \label{MandelStrain}
% \end{equation}
% \begin{equation}
% \ten{\sigma} = \left[ \begin{array}{ccc}
% \sigma_{11} & \sigma_{12} & \sigma_{13} \\
% \sigma_{21} & \sigma_{22} & \sigma_{23} \\
% \sigma_{31} & \sigma_{32} & \sigma_{33}
% \end{array} \right]
% = \left[ \sigma_{11} ,\, \sigma_{22} ,\, \sigma_{33} ,\, \sqrt{2} \sigma_{12} ,\, \sqrt{2} \sigma_{13} ,\, \sqrt{2} \sigma_{23} \right]
% = \left[ \sigma_{1} ,\, \sigma_{2} ,\, \sigma_{3} ,\, \sigma_{4} ,\, \sigma_{5} ,\, \sigma_{6} \right]
% \label{MandelStress}
% \end{equation}
% In Mandel notation, fourth-order tensors have prefactors in the lower and right quadrants.
% \begin{equation}
% \left[ \begin{array}{cccccc}
% C_{1111} & C_{1122} & C_{1133} & \sqrt{2} C_{1112} & \sqrt{2} C_{1113} & \sqrt{2} C_{1123} \\
% C_{2211} & C_{2222} & C_{2233} & \sqrt{2} C_{2212} & \sqrt{2} C_{2213} & \sqrt{2} C_{2223} \\
% C_{3311} & C_{3322} & C_{3333} & \sqrt{2} C_{3312} & \sqrt{2} C_{3313} & \sqrt{2} C_{3323} \\
% \sqrt{2} C_{1211} & \sqrt{2} C_{1222} & \sqrt{2} C_{1233} & 2C_{1212} & 2C_{1213} & 2C_{1223} \\
% \sqrt{2} C_{1311} & \sqrt{2} C_{1322} & \sqrt{2} C_{1333} & 2C_{1312} & 2C_{1313} & 2C_{1323} \\
% \sqrt{2} C_{2311} & \sqrt{2} C_{2322} & \sqrt{2} C_{2333} & 2C_{2312} & 2C_{2313} & 2C_{2323}
% \end{array} \right]
% \label{MandelMatrix}
% \end{equation}
% The relationship between higher-order tensors and their lower-order counterparts in Voigt notation is of considerable interest. For instance, if operations are performed on both, will their answers match? Here we will examine several common operations and assess their equivalence.
% %We know that with the square root notation, we have, for all A_ijkl and B_ij:
% %C_ij = A_ijkl : B_kl <==> C_I = A_IK . B_K
% %Right? Then, we must have, for all B_ij eigenvectors of A_ijkl:
% %A_ijkl : B_kl = \lambda B_kl <==> A_IK : B_K = \lambda B_K
% %Right? Thus, eigenproblems are equivalent. Right?
% %
% %Moreover, since we have, for all A_ijkl and B_ijkl:
% %C_ijkl = A_ijpq : B_pqkl <==> C_IK = A_IP : B_PK
% %Then we must have, for B_ijkl inverse of A_ijkl:
% %1_ijkl = A_ijpq : A_pqkl^-1 <==> 1_IK = A_IP : A_PK^-1
% %Right? (Of course, we're talking about 1_ijkl = \delta_ik \delta_jl, so that Voigt(1_ijkl) = 1_IK = \delta_IK.)
% \subsection{Dyadic Products}
% Given two stress-like tensors in Voigt notation,
% \begin{equation}
% \ten{A}^{\scas{V}} = \left[ a_{11} ,\, a_{22} ,\, a_{33} ,\, a_{12} ,\, a_{13} ,\, a_{23} \right], \qquad
% \ten{B}^{\scas{V}} = \left[ b_{11} ,\, b_{22} ,\, b_{33} ,\, b_{12} ,\, b_{13} ,\, b_{23} \right]
% \label{VoigtTensors}
% \end{equation}
% their dyadic product,
% \begin{equation}
% \ten{A}^{\scas{V}} \otimes \ten{B}^{\scas{V}} = \left[ \begin{array}{cccccc}
% a_{11} b_{11} & a_{11} b_{22} & a_{11} b_{33} & a_{11} b_{12} & a_{11} b_{13} & a_{11} b_{23} \\
% a_{22} b_{11} & a_{22} b_{22} & a_{22} b_{33} & a_{22} b_{12} & a_{22} b_{13} & a_{22} b_{23} \\
% a_{33} b_{11} & a_{33} b_{22} & a_{33} b_{33} & a_{33} b_{12} & a_{33} b_{13} & a_{33} b_{23} \\
% a_{12} b_{11} & a_{12} b_{22} & a_{12} b_{33} & a_{12} b_{12} & a_{12} b_{13} & a_{12} b_{23} \\
% a_{13} b_{11} & a_{13} b_{22} & a_{13} b_{33} & a_{13} b_{12} & a_{13} b_{13} & a_{13} b_{23} \\
% a_{23} b_{11} & a_{23} b_{22} & a_{23} b_{33} & a_{23} b_{12} & a_{23} b_{13} & a_{23} b_{23}
% \end{array} \right]
% \end{equation}
% is the same as the Voigt notation of the dyadic product of the full tensors. This would not hold, however, if either of the tensors in Voigt notation were strain-like and had prefactors of 2 in some terms.
% Given two tensors in Mandel notation,
% \begin{equation}
% \ten{A}^{\scas{M}} = \left[ a_{11} ,\, a_{22} ,\, a_{33} ,\, \sqrt{2} a_{12} ,\, \sqrt{2} a_{13} ,\, \sqrt{2} a_{23} \right], \qquad
% \ten{B}^{\scas{M}} = \left[ b_{11} ,\, b_{22} ,\, b_{33} ,\, \sqrt{2} b_{12} ,\, \sqrt{2} b_{13} ,\, \sqrt{2} b_{23} \right]
% \label{MandelTensors}
% \end{equation}
% their dyadic product is also the same as the Mandel notation of the dyadic product of the full tensors:
% \begin{equation}
% \ten{A}^{\scas{M}} \otimes \ten{B}^{\scas{M}} = \left[ \begin{array}{cccccc}
% a_{11} b_{11} & a_{11} b_{22} & a_{11} b_{33} & \sqrt{2} a_{11} b_{12} & \sqrt{2} a_{11} b_{13} & \sqrt{2} a_{11} b_{23} \\
% a_{22} b_{11} & a_{22} b_{22} & a_{22} b_{33} & \sqrt{2} a_{22} b_{12} & \sqrt{2} a_{22} b_{13} & \sqrt{2} a_{22} b_{23} \\
% a_{33} b_{11} & a_{33} b_{22} & a_{33} b_{33} & \sqrt{2} a_{33} b_{12} & \sqrt{2} a_{33} b_{13} & \sqrt{2} a_{33} b_{23} \\
% \sqrt{2} a_{12} b_{11} & \sqrt{2} a_{12} b_{22} & \sqrt{2} a_{12} b_{33} & 2a_{12} b_{12} & 2a_{12} b_{13} & 2a_{12} b_{23} \\
% \sqrt{2} a_{13} b_{11} & \sqrt{2} a_{13} b_{22} & \sqrt{2} a_{13} b_{33} & 2a_{13} b_{12} & 2a_{13} b_{13} & 2a_{13} b_{23} \\
% \sqrt{2} a_{23} b_{11} & \sqrt{2} a_{23} b_{22} & \sqrt{2} a_{23} b_{33} & 2a_{23} b_{12} & 2a_{23} b_{13} & 2a_{23} b_{23}
% \end{array} \right]
% \end{equation}
% \subsection{Double Contraction}
% The double contraction of two second-order tensors yields a scalar:
% \begin{align}
% c ={}& \ten{A} : \ten{B} \notag \\
% ={}& a_{11} b_{11} + a_{22} b_{22} + a_{33} b_{33} + a_{12} b_{12} + a_{13} b_{13} + a_{23} b_{23} + a_{21} b_{21} + a_{31} b_{31} + a_{32} b_{32}
% \end{align}
% which, when accounting for symmetry, yields
% \begin{equation}
% c =a_{11} b_{11} + a_{22} b_{22} + a_{33} b_{33} + 2a_{12} b_{12} + 2a_{13} b_{13} + 2 a_{23} b_{23}
% \end{equation}
% For a stress-like and a strain-like tensor in Voigt notation
% \begin{equation}
% \ten{A}^{\scas{V}} = \left[ a_{11} ,\, a_{22} ,\, a_{33} ,\, a_{12} ,\, a_{13} ,\, a_{23} \right], \qquad
% \ten{B}^{\scas{V}} = \left[ b_{11} ,\, b_{22} ,\, b_{33} ,\, 2 b_{12} ,\, 2 b_{13} ,\, 2 b_{23} \right]
% \end{equation}
% their inner product is equivalent to the double contraction of their symmetric second-order counterparts:
% \begin{align}
% c = \ten{A}^{\scas{V}} \cdot \ten{B}^{\scas{V}} = a_{11} b_{11} + a_{22} b_{22} + a_{33} b_{33} + 2 a_{12} b_{12} + 2 a_{13} b_{13} + 2 a_{23} + b_{23}
% \end{align}
% This would not hold, however, if both of the tensors were stress-like or strain-like.
% For two tensors in Mandel notation \ref{MandelTensors},
% \begin{equation}
% \ten{A}^{\scas{M}} = \left[ a_{11} ,\, a_{22} ,\, a_{33} ,\, \sqrt{2} a_{12} ,\, \sqrt{2} a_{13} ,\, \sqrt{2} a_{23} \right], \qquad
% \ten{B}^{\scas{M}} = \left[ b_{11} ,\, b_{22} ,\, b_{33} ,\, \sqrt{2} b_{12} ,\, \sqrt{2} b_{13} ,\, \sqrt{2} b_{23} \right]
% \end{equation}
% their inner product is also equivalent to the double contraction of their symmetric second-order counterparts:
% \begin{align}
% c = \ten{A}^{\scas{M}} \cdot \ten{B}^{\scas{M}} = a_{11} b_{11} + a_{22} b_{22} + a_{33} b_{33} + 2 a_{12} b_{12} + 2 a_{13} b_{13} + 2 a_{23} + b_{23}
% \end{align}
% \subsection{Invariants}
% \subsubsection{First Invariant}
% The first invariant, the trace, can be expressed in tensor form as:
% \begin{equation}
% \mbox{tr} (\ten{A}) = \ten{I} : \ten{A} = \ten{A} : \ten{I}
% \end{equation}
% Using Voigt notation for both the tensor $\ten{A}$ and the identity tensor,
% \begin{equation}
% \ten{A}^{\scas{V}} = \left[ \begin{array}{cccccc}
% a_{11} & a_{22} & a_{33} & a_{12} & a_{13} & a_{23}
% \end{array} \right] \, ,
% \qquad
% \ten{I}^v = \left[ \begin{array}{cccccc}
% 1 & 1 & 1 & 0 & 0 & 0
% \end{array} \right]
% \end{equation}
% and the reduced-order equation
% \begin{equation}
% \mbox{tr} (\ten{A}^{\scas{V}}) = \ten{I}^{\scas{V}} \cdot \ten{A}^{\scas{V}} = \ten{A}^{\scas{V}} \cdot \ten{I}^{\scas{V}}
% \end{equation}
% we calculate the trace of $\ten{A}$ to be
% \begin{equation}
% \mbox{tr} (\ten{A}) = a_{11} + a_{22} + a_{33}
% \end{equation}
% which matches the full-order result.
% Using Mandel notation for both the tensor $\ten{A}$ and the identity tensor,
% \begin{equation}
% \ten{A}^{\scas{M}} = \left[ \begin{array}{cccccc}
% a_{11} & a_{22} & a_{33} & \sqrt{2} a_{12} & \sqrt{2} a_{13} & \sqrt{2} a_{23}
% \end{array} \right] \, ,
% \qquad
% \ten{I}^v = \left[ \begin{array}{cccccc}
% 1 & 1 & 1 & 0 & 0 & 0
% \end{array} \right]
% \end{equation}
% the same answer is obtained.
% Thus, while the first invariant uses a double contraction operation, it represents a special case where both Voigt and Mandel notation preserve the result.
% %
% %\subsection{Inverses}
% %%\subsubsection{Inverses of Second-Order Tensors}
% %%The definition of the inverse of a second-order tensor is a tensor that, when multiplied by the original tensor, yields the second-order identity tensor.
% %%\begin{equation}
% %%\ten{A} \cdot \ten{A}^{-1} = \ten{I}
% %%\end{equation}
% %%
% %%I'm not sure what I'm checking here. Vectors don't really have an inverse, so there is not really an analog here, is there?
% %
% %\subsubsection{Inverses of Fourth-Order Tensors}
% %The definition of the inverse of a fourth-order tensor is a tensor that, when double contracted with the original tensor, yields the fourth-order identity tensor.
% %\begin{equation}
% %\tenf{A} : \tenf{A}^{-1} = \ten{I} \overline{\otimes} \ten{I} = \tenf{I}
% %\end{equation}
% %
% %Because the double contraction of two fourth-order tensors is equivalent to the multiplication of their second-order Mandel counterparts, it should be expected that
% %\begin{equation}
% %\ten{A}^{\scas{M}} \cdot \ten{A}^{-1,M} = \ten{I}
% %\end{equation}
% %while this would not be true of Voigt notation. Instead, the opposite happens . . . \fxnote{Why???? Also, I was only able to test this for tensors that fit the Sherman-Morrison formula}
% %
% %Another question is, is the inverse operation on a Voigt or Mandel tensor equivalent to the inverse operation on their full-order counterpart? The answer appears to be yes for Mandel notation, but not in Voigt notation. That is,
% %
% %\pgfdeclarelayer{background}
% %\pgfsetlayers{background,main}
% %
% %\begin{center} \begin{tikzpicture}[start chain=going below]
% % \node [input, fill=white] (t4) {4th order tensor};
% % \node [input, fill=white, right=2cm of t4] (t2) {2nd order tensor};
% % \node [input, fill=white, below=2cm of t2] (i2) {2nd order inverse};
% % \node [input, fill=white, below=2cm of t4] (i4) {4th order inverse};
% % \draw [double] (t4) to node [yshift=0.5cm] {Voigt notation} (t2);
% % \draw [double] (i2) to node [yshift=-0.5cm] {Voigt notation} (i4);
% % \draw [double] (t4) to (i4);
% % \draw [dottedline] (t2) to (i2);
% %\end{tikzpicture}
% %
% %\begin{tikzpicture}[start chain=going below]
% % \node [input, fill=white] (t4) {4th order tensor};
% % \node [input, fill=white, right=2cm of t4] (t2) {2nd order tensor};
% % \node [input, fill=white, below=2cm of t2] (i2) {2nd order inverse};
% % \node [input, fill=white, below=2cm of t4] (i4) {4th order inverse};
% % \draw [double] (t4) to node [yshift=0.5cm] {Mandel notation} (t2);
% % \draw [double] (i2) to node [yshift=-0.5cm] {Mandel notation} (i4);
% % \draw [dottedline] (t4) to (i4);
% % \draw [double] (t2) to (i2);
% %\end{tikzpicture} \end{center}
% %\fxnote{I'm actually not sure where this breaks down for Mandel notation}.
% %where $\ten{I}^{\scas{M}}$ is the Mandel form of the fourth-order identity tensor,
% %\begin{equation}
% %\ten{I}^{\scas{M}} = \left[ \begin{array}{cccccc}
% %1 & 0 & 0 & 0 & 0 & 0 \\
% %0 & 1 & 0 & 0 & 0 & 0 \\
% %0 & 0 & 1 & 0 & 0 & 0 \\
% %0 & 0 & 0 & 2 & 0 & 0 \\
% %0 & 0 & 0 & 0 & 2 & 0 \\
% %0 & 0 & 0 & 0 & 0 & 2
% %\end{array} \right]
% %\end{equation}
% %\subsection{Derivatives}
% %I actually don't think this matters because we're finding derivatives analytically and then putting them into Voigt notation. Actually, because of this I'm not sure how much any of this matters.
% %\subsection{Orthogonal Transformations}
% %\subsection{Eigenvalues}
% %Frankly, my dear, I don't give a damn.
% %
% %\section{$\ten{F}$ and $\ten{C}$}
% %The derivative $\partial \ten{C} / \partial \ten{F}$ is easy to find:
% %\begin{align}
% %\frac{\partial \ten{C}_{IJ}}{\partial \ten{F}_{kL}} ={}& \frac{\partial \left( \ten{F}_{aI} \ten{F}_{aJ} \right) }{\partial \ten{F}_{kL}} \notag \\
% %={}& \frac{\partial \ten{F}_{aI} }{\partial \ten{F}_{kL}} \ten{F}_{aJ} + \ten{F}_{aI} \frac{\partial \ten{F}_{aJ} }{\partial \ten{F}_{kL}} \notag \\
% %={}& \delta_{ak} \delta_{IL} \ten{F}_{aJ} + \ten{F}_{aI} \delta_{ak} \delta_{JL} \notag \\
% %={}& \delta_{IL} \ten{F}_{kJ} + \ten{F}_{kI} \delta_{JL} \notag \\
% %\frac{\partial \ten{C}}{\partial \ten{F}} ={}& \ten{I} \overline{\otimes} \ten{F}^{\scas{T}} + \ten{F}^{\scas{T}} \underline{\otimes} \ten{I}
% %\end{align}
% %
% %Its inverse, $\partial \ten{F} / \partial \ten{C}$, is more difficult. It should satisfy the following relations:
% %%\begin{align}
% %%\frac{\partial \ten{F}}{\partial \ten{F}} ={}& \frac{\partial \ten{F}}{\partial \ten{C}} : \frac{\partial \ten{C}}{\partial \ten{F}} \notag \\
% %%\frac{\partial \ten{F}_{iJ}}{\partial \ten{F}_{kL}} ={}& \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{MN}} \frac{\partial \ten{C}_{MN}}{\partial \ten{F}_{kL}} \notag \\
% %%\delta_{ik} \delta_{JL} ={}& \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{MN}} \left( \delta_{ML} \ten{F}_{kN} + \ten{F}_{kM} \delta_{NL} \right) \notag \\
% %%={}& \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{MN}} \delta_{ML} \ten{F}_{kN} + \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{MN}} \ten{F}_{kM} \delta_{NL} \notag \\
% %%={}& \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{LN}} \ten{F}_{kN} + \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{ML}} \ten{F}_{kM} \notag \\
% %%\delta_{ik} \delta_{JL} ={}& 2 \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \ten{F}_{kK} \notag
% %%\end{align}
% %\begin{equation}
% %\frac{\partial \ten{F}}{\partial \ten{F}} = \frac{\partial \ten{F}}{\partial \ten{C}} : \frac{\partial \ten{C}}{\partial \ten{F}} \implies \boxed{ \delta_{ik} \delta_{JL} = 2 \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \ten{F}_{kK} }
% %\end{equation}
% %
% %
% %%\begin{align}
% %%\frac{\partial I_1}{\partial \ten{C}} ={}& \frac{\partial I_1}{\partial \ten{F}} : \frac{\partial \ten{F}}{\partial \ten{C}} \notag \\
% %%\frac{\partial I_1}{\partial \ten{C}_{KL}} ={}& \frac{\partial I_1}{\partial \ten{F}_{iJ}} \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \notag \\
% %%\delta_{KL} ={}& \frac{\partial tr(\ten{C})}{\partial \ten{C}_{MN}} \frac{\partial \ten{C}_{MN}}{\partial \ten{F}_{iJ}}\frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \notag \\
% %%={}& \delta_{MN} \left( \delta_{MJ} \ten{F}_{iN} + \ten{F}_{iM} \delta_{NJ} \right) \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \notag \\
% %%={}& \left( \ten{F}_{iJ} + \ten{F}_{iJ} \right) \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \notag \\
% %%\delta_{KL} ={}& 2 \ten{F}_{iJ} \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \notag
% %%\end{align}
% %\begin{equation}
% %\frac{\partial I_1}{\partial \ten{C}} = \frac{\partial I_1}{\partial \ten{F}} : \frac{\partial \ten{F}}{\partial \ten{C}} \implies \boxed{ \delta_{KL} = 2 \ten{F}_{iJ} \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} }
% %\end{equation}
% %
% %
% %%\begin{align}
% %%\frac{\partial J}{\partial \ten{C}} ={}& \frac{\partial J}{\partial \ten{F}} : \frac{\partial \ten{F}}{\partial \ten{C}} \notag \\
% %%\frac{\partial J}{\partial \ten{C}_{KL}} ={}& \frac{\partial J}{\partial \ten{F}_{iJ}} \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \notag \\
% %%\frac{J}{2} \ten{C}^{-1}_{KL} ={}& J \ten{F}^{-1}_{Ji} \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \notag \\
% %%\ten{C}^{-1}_{KL} ={}& 2 \ten{F}^{-1}_{Ji} \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} \notag \\
% %%\end{align}
% %\begin{equation}
% %\frac{\partial J}{\partial \ten{C}} = \frac{\partial J}{\partial \ten{F}} : \frac{\partial \ten{F}}{\partial \ten{C}} \implies \boxed{ \ten{C}^{-1}_{KL} = 2 \ten{F}^{-1}_{Ji} \frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} }
% %\end{equation}
% %
% %The equation
% %\begin{equation}
% %\frac{\partial \ten{F}_{iJ}}{\partial \ten{C}_{KL}} = \frac{1}{4} \left( \ten{F}^{-1}_{Ki} \delta_{JL} + \ten{F}_{Li}^{-1} \delta_{JK} \right)
% %\end{equation}
% %satisfies the second and third relations, but not the first.
% \subsection{Cauchy Stress-Driven Fiber Growth}
% This UMAT is used for materials that exhibit isotropic growth driven by a normal component of the Cauchy stress.
% \subsubsection{Kinematics}
% Based on the assumptions of isotropic growth, the the growth tensor is
% \begin{equation}
% \ten{F}^{\scas{g}} = \sqrt[3]{\vartheta^{\scas{g}}} \ten{I} \, ,
% \end{equation}
% with inverse
% \begin{equation}
% \ten{F}^{\scas{g}-1} = \frac{1}{\sqrt[3]{\vartheta^{\scas{g}}}} \ten{I} \, .
% \end{equation}
% The Jacobian, or determinant of the deformation tensor, is easily calculated to be
% \begin{equation}
% \det (\ten{F}^{\scas{g}}) = J^{\scas{g}} = \vartheta^{\scas{g}} \, .
% \end{equation}
% \subsubsection{Growth Kinetics}
% The evolution equation consists of two functions - a growth rate, $k^{\scas{g}}$, and growth criterion, $\phi^{\scas{g}}$ (see examples listed in Section \ref{subsec:crit}). For this model, we choose any appropriate growth rate $k^{\scas{g}}$, and a growth criterion function that is dependent on the normal component of Cauchy stress in the direction of $\ten{N}$.
% \begin{equation}
% \phi = \ten{\sigma}^{\tens{N}} - \ten{\sigma}^{\tens{N}}_{\scas{crit}} \, ,
% \qquad \mbox{where} \qquad
% \ten{\sigma}^{\tens{N}} = \ten{\sigma} : \ten{N} \, .
% \end{equation}
% The derivative of the growth criterion function is equal to the derivative of $ \ten{\sigma}^{\tens{N}} $,
% \begin{equation}
% \left. \frac{\partial \phi^{\scas{g}}}{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% = \left. \frac{\partial \left( \ten{\sigma}^{\tens{N}} - \ten{\sigma}^{\tens{N}}_{\scas{crit}} \right)}{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% = \left. \frac{\partial \ten{\sigma}^{\tens{N}} }{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% = \left. \frac{ \partial \left( \ten{\sigma}_{ij} \ten{N}_{ij} \right)}{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% = \left. \frac{ \partial \left( \ten{\sigma}_{ij} \ten{F}_{iI} \ten{F}_{jJ} \ten{N}^0_{IJ} \right)}{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% = \ten{F}_{iI} \ten{F}_{jJ} \ten{N}^0_{IJ} \left. \frac{ \partial \left( \ten{\sigma}_{ij} \right)}{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% = \ten{N}_{ij} \left. \frac{ \partial \ten{\sigma}_{ij} }{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}} \, .
% \end{equation}
% For the logarithmic Neo-Hookean material model, this derivative is calculated as
% \begin{align}
% \left. \frac{\partial \phi^{\scas{g}}}{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% ={}& \ten{N}_{ij} \left. \frac{ \partial \ten{\sigma}_{ij} }{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% \\
% % % begin derivations
% % ={}& \ten{N}_{ij} \left. \frac{ \partial \Big( \left[ \left[ \lambda \ln J^{\scas{e}} - \mu \right] \delta_{ij} + \mu \ten{b}^{\scas{e}}_{ij} \right] / J^{\scas{e}} \Big) }{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% % \notag \\
% % % ={}& \frac{1}{J} \ten{N}_{ij} \left. \frac{ \partial \Big( J^{\scas{g}} \left[ \left[ \lambda \ln J^{\scas{e}} - \mu \right] \delta_{ij} + \mu \ten{b}^{\scas{e}}_{ij} \right]\Big) }{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% % % \notag \\
% % % ={}& \frac{1}{J} \ten{N}_{ij} \left. \frac{ \partial \Big( J^{\scas{g}} \left[ \lambda \ln J^{\scas{e}} - \mu \right] \delta_{ij} + \mu J^{\scas{g}} \ten{b}^{\scas{e}}_{ij} \Big) }{\partial \vartheta^{\scas{g}}} \right|_{\tens{C}}
% % % \notag \\
% % ={}& \frac{1}{J} \ten{N}_{ij} \left. \left[
% % \left[
% % \frac{ \partial J^{\scas{g}} }{\partial \vartheta^{\scas{g}}} \left[ \lambda \ln J^{\scas{e}} - \mu \right]
% % + \lambda J^{\scas{g}} \frac{ \partial \left( \ln J^{\scas{e}} \right) }{\partial \vartheta^{\scas{g}}}
% % \right] \delta_{ij}
% % + \mu \frac{ \partial \Big( J^{\scas{g}} \left[ \frac{1}{\vartheta^{\scas{g}^{2/3}}} \ten{b}_{ij} \right] \Big) }{\partial \vartheta^{\scas{g}}}
% % \right] \right|_{\tens{C}}
% % \notag \\
% % ={}& \frac{1}{J} \ten{N}_{ij} \left. \left[
% % \left[ \lambda \ln J^{\scas{e}} - \mu
% % + \lambda J^{\scas{g}} \frac{ \partial \left( \ln J^{\scas{e}} \right) }{\partial J^{\scas{e}} } \frac{ \partial J^{\scas{e}} }{\partial J^{\scas{g}}}
% % \right] \delta_{ij}
% % + \mu \frac{ \partial \Big( J^{\scas{g}^{1/3}} \Big) }{\partial J^{\scas{g}}} \ten{b}_{ij}
% % \right] \right|_{\tens{C}}
% % \notag \\
% % ={}& \frac{1}{J} \ten{N}_{ij} \left[
% % \left[ \lambda \ln J^{\scas{e}} - \mu + \lambda J^{\scas{g}} \left[ \frac{1}{ J^{\scas{e}} } \right] \left[ - \frac{J}{ J^{\scas{g}^2} } \right] \right] \delta_{ij}
% % + \mu \left[ \frac{1}{3} J^{\scas{g}^{-2/3}} \right] \ten{b}_{ij}
% % \right]
% % \notag \\
% % ={}& \frac{1}{J} \ten{N}_{ij} \left[
% % \left[ \lambda \ln J^{\scas{e}} - \mu - \lambda \right] \delta_{ij}
% % + \frac{\mu}{3} \ten{b}^{\scas{e}}_{ij}
% % \right]
% % \notag \\
% % % end derivations
% \cdots{}& \notag \\
% ={}& \frac{1}{J} \left[ \left[ \lambda \ln J^{\scas{e}} - \mu - \lambda \right] \ten{N}_{ii}
% + \frac{\mu}{3} \ten{b}^{\scas{e}}_{ij} \ten{N}_{ij} \right]
% \, .
% \end{align}