forked from hsluv/hsluv-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhsluv.py
300 lines (220 loc) · 7.13 KB
/
hsluv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
""" This module is generated by transpiling Haxe into Python and cleaning
the resulting code by hand, e.g. removing unused Haxe classes. To try it
yourself, clone https://github.com/hsluv/hsluv and run:
haxe -cp haxe/src hsluv.Hsluv -python hsluv.py
"""
from functools import wraps as _wraps, partial as _partial # unexport, see #17
import math as _math # unexport, see #17
__version__ = '5.0.3'
_m = [[3.240969941904521, -1.537383177570093, -0.498610760293],
[-0.96924363628087, 1.87596750150772, 0.041555057407175],
[0.055630079696993, -0.20397695888897, 1.056971514242878]]
_min_v = [[0.41239079926595, 0.35758433938387, 0.18048078840183],
[0.21263900587151, 0.71516867876775, 0.072192315360733],
[0.019330818715591, 0.11919477979462, 0.95053215224966]]
_ref_y = 1.0
_ref_u = 0.19783000664283
_ref_v = 0.46831999493879
_kappa = 903.2962962
_epsilon = 0.0088564516
def _normalize_output(conversion):
# as in snapshot rev 4, the tolerance should be 1e-11
normalize = _partial(round, ndigits=11-1)
@_wraps(conversion)
def normalized(*args, **kwargs):
color = conversion(*args, **kwargs)
return tuple(normalize(c) for c in color)
return normalized
def _distance_line_from_origin(line):
v = line['slope'] ** 2 + 1
return abs(line['intercept']) / _math.sqrt(v)
def _length_of_ray_until_intersect(theta, line):
return line['intercept']\
/ (_math.sin(theta) - line['slope'] * _math.cos(theta))
def _get_bounds(l):
result = []
sub1 = ((l + 16) ** 3) / 1560896
if sub1 > _epsilon:
sub2 = sub1
else:
sub2 = l / _kappa
_g = 0
while _g < 3:
c = _g
_g += 1
m1 = _m[c][0]
m2 = _m[c][1]
m3 = _m[c][2]
_g1 = 0
while _g1 < 2:
t = _g1
_g1 += 1
top1 = (284517 * m1 - 94839 * m3) * sub2
top2 = (838422 * m3 + 769860 * m2 + 731718 * m1)\
* l * sub2 - (769860 * t) * l
bottom = (632260 * m3 - 126452 * m2) * sub2 + 126452 * t
result.append({'slope': top1 / bottom, 'intercept': top2 / bottom})
return result
def _max_safe_chroma_for_l(l):
return min(_distance_line_from_origin(bound)
for bound in _get_bounds(l))
def _max_chroma_for_lh(l, h):
hrad = _math.radians(h)
lengths = [_length_of_ray_until_intersect(hrad, bound) for bound in _get_bounds(l)]
return min(length for length in lengths if length >= 0)
def _dot_product(a, b):
return sum(i * j for i, j in zip(a, b))
def _from_linear(c):
if c <= 0.0031308:
return 12.92 * c
return 1.055 * _math.pow(c, 5 / 12) - 0.055
def _to_linear(c):
if c > 0.04045:
return _math.pow((c + 0.055) / 1.055, 2.4)
return c / 12.92
def _y_to_l(y):
if y <= _epsilon:
return y / _ref_y * _kappa
return 116 * _math.pow(y / _ref_y, 1 / 3) - 16
def _l_to_y(l):
if l <= 8:
return _ref_y * l / _kappa
return _ref_y * (((l + 16) / 116) ** 3)
def xyz_to_rgb(_hx_tuple):
return (
_from_linear(_dot_product(_m[0], _hx_tuple)),
_from_linear(_dot_product(_m[1], _hx_tuple)),
_from_linear(_dot_product(_m[2], _hx_tuple)))
def rgb_to_xyz(_hx_tuple):
rgbl = (_to_linear(_hx_tuple[0]),
_to_linear(_hx_tuple[1]),
_to_linear(_hx_tuple[2]))
return (_dot_product(_min_v[0], rgbl),
_dot_product(_min_v[1], rgbl),
_dot_product(_min_v[2], rgbl))
def xyz_to_luv(_hx_tuple):
x = float(_hx_tuple[0])
y = float(_hx_tuple[1])
z = float(_hx_tuple[2])
l = _y_to_l(y)
if l == 0:
return (0, 0, 0)
divider = x + 15 * y + 3 * z
if divider == 0:
u = v = float("nan")
return (l, u, v)
var_u = 4 * x / divider
var_v = 9 * y / divider
u = 13 * l * (var_u - _ref_u)
v = 13 * l * (var_v - _ref_v)
return (l, u, v)
def luv_to_xyz(_hx_tuple):
l = float(_hx_tuple[0])
u = float(_hx_tuple[1])
v = float(_hx_tuple[2])
if l == 0:
return (0, 0, 0)
var_u = u / (13 * l) + _ref_u
var_v = v / (13 * l) + _ref_v
y = _l_to_y(l)
x = y * 9 * var_u / (4 * var_v)
z = y * (12 - 3 * var_u - 20 * var_v) / (4 * var_v)
return (x, y, z)
def luv_to_lch(_hx_tuple):
l = float(_hx_tuple[0])
u = float(_hx_tuple[1])
v = float(_hx_tuple[2])
c = _math.hypot(u, v)
if c < 1e-08:
h = 0
else:
hrad = _math.atan2(v, u)
h = _math.degrees(hrad)
if h < 0:
h += 360
return (l, c, h)
def lch_to_luv(_hx_tuple):
l = float(_hx_tuple[0])
c = float(_hx_tuple[1])
h = float(_hx_tuple[2])
hrad = _math.radians(h)
u = _math.cos(hrad) * c
v = _math.sin(hrad) * c
return (l, u, v)
def hsluv_to_lch(_hx_tuple):
h = float(_hx_tuple[0])
s = float(_hx_tuple[1])
l = float(_hx_tuple[2])
if l > 100-1e-7:
return (100, 0, h)
if l < 1e-08:
return (0, 0, h)
_hx_max = _max_chroma_for_lh(l, h)
c = _hx_max / 100 * s
return (l, c, h)
def lch_to_hsluv(_hx_tuple):
l = float(_hx_tuple[0])
c = float(_hx_tuple[1])
h = float(_hx_tuple[2])
if l > 100-1e-7:
return (h, 0, 100)
if l < 1e-08:
return (h, 0, 0)
_hx_max = _max_chroma_for_lh(l, h)
s = c / _hx_max * 100
return (h, s, l)
def hpluv_to_lch(_hx_tuple):
h = float(_hx_tuple[0])
s = float(_hx_tuple[1])
l = float(_hx_tuple[2])
if l > 100-1e-7:
return (100, 0, h)
if l < 1e-08:
return (0, 0, h)
_hx_max = _max_safe_chroma_for_l(l)
c = _hx_max / 100 * s
return (l, c, h)
def lch_to_hpluv(_hx_tuple):
l = float(_hx_tuple[0])
c = float(_hx_tuple[1])
h = float(_hx_tuple[2])
if l > 100-1e-7:
return (h, 0, 100)
if l < 1e-08:
return (h, 0, 0)
_hx_max = _max_safe_chroma_for_l(l)
s = c / _hx_max * 100
return (h, s, l)
def rgb_to_hex(_hx_tuple):
return '#{:02x}{:02x}{:02x}'.format(
int(_math.floor(_hx_tuple[0] * 255 + 0.5)),
int(_math.floor(_hx_tuple[1] * 255 + 0.5)),
int(_math.floor(_hx_tuple[2] * 255 + 0.5)))
def hex_to_rgb(_hex):
# skip leading '#'
r = int(_hex[1:3], base=16) / 255.0
g = int(_hex[3:5], base=16) / 255.0
b = int(_hex[5:7], base=16) / 255.0
return (r, g, b)
def lch_to_rgb(_hx_tuple):
return xyz_to_rgb(luv_to_xyz(lch_to_luv(_hx_tuple)))
def rgb_to_lch(_hx_tuple):
return luv_to_lch(xyz_to_luv(rgb_to_xyz(_hx_tuple)))
def _hsluv_to_rgb(_hx_tuple):
return lch_to_rgb(hsluv_to_lch(_hx_tuple))
hsluv_to_rgb = _normalize_output(_hsluv_to_rgb)
def rgb_to_hsluv(_hx_tuple):
return lch_to_hsluv(rgb_to_lch(_hx_tuple))
def _hpluv_to_rgb(_hx_tuple):
return lch_to_rgb(hpluv_to_lch(_hx_tuple))
hpluv_to_rgb = _normalize_output(_hpluv_to_rgb)
def rgb_to_hpluv(_hx_tuple):
return lch_to_hpluv(rgb_to_lch(_hx_tuple))
def hsluv_to_hex(_hx_tuple):
return rgb_to_hex(hsluv_to_rgb(_hx_tuple))
def hpluv_to_hex(_hx_tuple):
return rgb_to_hex(hpluv_to_rgb(_hx_tuple))
def hex_to_hsluv(s):
return rgb_to_hsluv(hex_to_rgb(s))
def hex_to_hpluv(s):
return rgb_to_hpluv(hex_to_rgb(s))