-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataHoarder.py
39 lines (33 loc) · 1.04 KB
/
dataHoarder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import measurement as ms
import pandas as pd
def importFiles(filenames, mClass, nameparser):
df = pd.DataFrame()
for fname in filenames:
data = mClass(fname).asDict()
metadata = nameparser(fname)
df = df.append({**metadata, **data}, ignore_index=True)
return df
def sp(fname):
name, _ = fname.split('.')
name = name.split('/')[-1]
params = name.split('_')
s = params[0]
c = params[1]
a = params[2]
if len(params) == 4:
version = params[3]
s += version
return {'sample':s, 'capping':c, 'anneal':a}
# example script
if __name__ == 'main':
import os
os.chdir('Anneal series ZnO Al + cap')
import glob
files = glob.glob('Hall/*.xlsx')
data = importFiles(files, ms.HallMeasurement, sp)
# pick the relevant stuff
shdata = data[['sample', 'capping', 'anneal','Hall mobility']]
# make a pivot table
mpivot = pd.pivot_table(shdata, values='Hall mobility',
index=['sample','capping'],
columns=['anneal'])