-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathBellmanFord.java
123 lines (102 loc) · 5.68 KB
/
BellmanFord.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
package com.jwetherell.algorithms.graph;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import com.jwetherell.algorithms.data_structures.Graph;
/**
* Bellman-Ford's shortest path. Works on both negative and positive weighted
* edges. Also detects negative weight cycles. Returns a tuple of total cost of
* shortest path and the path.
* <p>
* Worst case: O(|V| |E|)
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm">Bellman Ford (Wikipedia)</a>
* <br>
* @author Justin Wetherell <[email protected]>
*/
public class BellmanFord {
private BellmanFord() { }
/**
* Get shortest path for all vertices
*/
public static Map<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>> getShortestPaths(Graph<Integer> graph, Graph.Vertex<Integer> start) {
final Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths = new HashMap<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>();
final Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs = new HashMap<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>>();
getShortestPath(graph, start, paths, costs);
final Map<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>> map = new HashMap<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>>();
for (Graph.CostVertexPair<Integer> pair : costs.values()) {
final int cost = pair.getCost();
final Graph.Vertex<Integer> vertex = pair.getVertex();
final List<Graph.Edge<Integer>> path = paths.get(vertex);
map.put(vertex, new Graph.CostPathPair<Integer>(cost, path));
}
return map;
}
/**
* Get shortest path to from 'start' to 'end' vertices
*/
public static Graph.CostPathPair<Integer> getShortestPath(Graph<Integer> graph, Graph.Vertex<Integer> start, Graph.Vertex<Integer> end) {
if (graph == null)
throw (new NullPointerException("Graph must be non-NULL."));
final Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths = new HashMap<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>();
final Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs = new HashMap<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>>();
return getShortestPath(graph, start, end, paths, costs);
}
private static Graph.CostPathPair<Integer> getShortestPath(Graph<Integer> graph,
Graph.Vertex<Integer> start, Graph.Vertex<Integer> end,
Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths,
Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs) {
if (end == null)
throw (new NullPointerException("end must be non-NULL."));
getShortestPath(graph, start, paths, costs);
final Graph.CostVertexPair<Integer> pair = costs.get(end);
final List<Graph.Edge<Integer>> list = paths.get(end);
return (new Graph.CostPathPair<Integer>(pair.getCost(), list));
}
private static void getShortestPath(Graph<Integer> graph,
Graph.Vertex<Integer> start,
Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths,
Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs) {
if (graph == null)
throw (new NullPointerException("Graph must be non-NULL."));
if (start == null)
throw (new NullPointerException("start must be non-NULL."));
for (Graph.Vertex<Integer> v : graph.getVertices())
paths.put(v, new ArrayList<Graph.Edge<Integer>>());
// All vertices are INFINITY unless it's the start vertices
for (Graph.Vertex<Integer> v : graph.getVertices())
if (v.equals(start))
costs.put(v, new Graph.CostVertexPair<Integer>(0, v));
else
costs.put(v, new Graph.CostVertexPair<Integer>(Integer.MAX_VALUE, v));
boolean negativeCycleCheck = false;
for (int i = 0; i < graph.getVertices().size(); i++) {
// If it's the last vertices, perform a negative weight cycle check.
// The graph should be finished by the size()-1 time through this loop.
if (i == (graph.getVertices().size() - 1))
negativeCycleCheck = true;
// Compute costs to all vertices
for (Graph.Edge<Integer> e : graph.getEdges()) {
final Graph.CostVertexPair<Integer> pair = costs.get(e.getToVertex());
final Graph.CostVertexPair<Integer> lowestCostToThisVertex = costs.get(e.getFromVertex());
// If the cost of the from vertex is MAX_VALUE then treat as INIFINITY.
if (lowestCostToThisVertex.getCost() == Integer.MAX_VALUE)
continue;
final int cost = lowestCostToThisVertex.getCost() + e.getCost();
if (cost < pair.getCost()) {
// Found a shorter path to a reachable vertex
pair.setCost(cost);
if (negativeCycleCheck) {
// Uhh ohh... negative weight cycle
throw new IllegalArgumentException("Graph contains a negative weight cycle.");
}
final List<Graph.Edge<Integer>> list = paths.get(e.getToVertex());
list.clear();
list.addAll(paths.get(e.getFromVertex()));
list.add(e);
}
}
}
}
}