-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathPrim.java
61 lines (48 loc) · 2.11 KB
/
Prim.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
package com.jwetherell.algorithms.graph;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Set;
import com.jwetherell.algorithms.data_structures.Graph;
/**
* Prim's minimum spanning tree. Only works on undirected graphs. It finds a
* subset of the edges that forms a tree that includes every vertex, where the
* total weight of all the edges in the tree is minimized.
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Prim%27s_algorithm">Prim's Minimum Spanning Tree (Wikipedia)</a>
* <br>
* @author Justin Wetherell <[email protected]>
*/
public class Prim {
private Prim() { }
public static Graph.CostPathPair<Integer> getMinimumSpanningTree(Graph<Integer> graph, Graph.Vertex<Integer> start) {
if (graph == null)
throw (new NullPointerException("Graph must be non-NULL."));
// Prim's algorithm only works on undirected graphs
if (graph.getType() == Graph.TYPE.DIRECTED)
throw (new IllegalArgumentException("Undirected graphs only."));
int cost = 0;
final Set<Graph.Vertex<Integer>> unvisited = new HashSet<Graph.Vertex<Integer>>();
unvisited.addAll(graph.getVertices());
unvisited.remove(start); // O(1)
final List<Graph.Edge<Integer>> path = new ArrayList<Graph.Edge<Integer>>();
final Queue<Graph.Edge<Integer>> edgesAvailable = new PriorityQueue<Graph.Edge<Integer>>();
Graph.Vertex<Integer> vertex = start;
while (!unvisited.isEmpty()) {
// Add all edges to unvisited vertices
for (Graph.Edge<Integer> e : vertex.getEdges()) {
if (unvisited.contains(e.getToVertex()))
edgesAvailable.add(e);
}
// Remove the lowest cost edge
final Graph.Edge<Integer> e = edgesAvailable.remove();
cost += e.getCost();
path.add(e); // O(1)
vertex = e.getToVertex();
unvisited.remove(vertex); // O(1)
}
return (new Graph.CostPathPair<Integer>(cost, path));
}
}