-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding_transformation.py
235 lines (172 loc) · 7.99 KB
/
embedding_transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import numpy as np
import plotly.graph_objects as go
import tsp
from scipy.spatial import distance_matrix
import scipy.interpolate
from scipy.ndimage.filters import gaussian_filter
from scipy.stats import logistic
from opensimplex import OpenSimplex
def test_embedding_transformations(embedding_transformations, inital_embedding_size=4, img_size=(50,50,3)):
random_color = np.random.uniform(size=(inital_embedding_size, img_size[2]))
embeddings = np.array([np.tile(c, (img_size[0], img_size[1], 1)) for c in random_color])
init_embeddings = embeddings.copy()
for embedding_transformation in embedding_transformations:
embeddings = embedding_transformation(embeddings)
return init_embeddings, embeddings
def plot_embeddings_2d(init_embeddings, embeddings):
fig = go.Figure(go.Scatter(x=init_embeddings[:,0,0,0], y=init_embeddings[:,0,0,1], mode='lines+markers', name="init_embeddings"))
fig.add_trace(go.Scatter(x=embeddings[:,0,0,0], y=embeddings[:,0,0,1], mode='lines+markers', fill="toself", name="embeddings"))
fig.update_yaxes(scaleanchor = "x",scaleratio = 1)
fig.update_layout(width = 900,height = 900)
fig.show()
def get_loop_dist_mean(embeddings):
return np.mean([np.linalg.norm(embeddings[i-1]-embeddings[i]) for i in range(len(embeddings))])
def reorder_with_tsp():
def transformation(embeddings):
shape = embeddings.shape[1:]
embeddings = embeddings.reshape((embeddings.shape[0], -1))
dist_mat = distance_matrix(embeddings, embeddings)
dist, permutation = tsp.tsp(dist_mat)
embeddings = embeddings[permutation]
embeddings = embeddings.reshape((-1, *shape))
return embeddings
return transformation
def init_embedding_count(count):
return count
def interpolate_smooth_equi_dist(frame_count, smoothness=0.25, num_of_iterations=3):
# smoothness: 0 means no smoothnes, 0.25 is max smoothnes
def transformation(embeddings):
embeddings = np.concatenate((embeddings, embeddings[:2]))
for _ in range(num_of_iterations):
l = len(embeddings)
f = scipy.interpolate.interp1d(range(l), embeddings, axis=0, kind="linear")
embeddings = f(np.sort(np.concatenate((np.arange(l)-smoothness, np.arange(l)+smoothness)))[1:-1])
embeddings = embeddings[2:]
embeddings = np.concatenate((embeddings, embeddings[:1]))
for i in range(5):
distances = np.array([np.linalg.norm(e0-e1) for e0, e1 in zip(embeddings, np.roll(embeddings, 1, axis=0))])
distances = np.cumsum(distances / np.sum(distances) * len(distances))
f = scipy.interpolate.interp1d(distances, embeddings, axis=0, kind="linear")
embeddings = f(np.linspace(distances[0], len(embeddings)-0.0001, num=frame_count+1, endpoint=True))
return embeddings[:-1]
return transformation
def cluster(cluster_size):
def transformation(embeddings):
shape = embeddings.shape[1:]
embeddings = embeddings.reshape((embeddings.shape[0], -1))
dist_mat = distance_matrix(embeddings, embeddings)
cluster = []
dist_mat_min = np.min(dist_mat)
min_row, min_col = np.where(dist_mat == dist_mat_min)
cluster.append(min_row[0])
cluster.append(min_col[0])
within_cluster_dist = dist_mat_min
for _ in range(cluster_size-2):
min_temp_withing_cluster_dist = np.inf
min_index = None
for i in range(len(embeddings)):
if i in cluster:
continue
temp_within_cluster_dist = within_cluster_dist
for c in cluster:
temp_within_cluster_dist += dist_mat[i, c]
if temp_within_cluster_dist < min_temp_withing_cluster_dist:
min_temp_withing_cluster_dist = temp_within_cluster_dist
min_index = i
cluster.append(min_index)
within_cluster_dist = min_temp_withing_cluster_dist
embeddings = embeddings[cluster].reshape((-1, *shape))
return embeddings
return transformation
def sliding(frame_count, horizontal=False):
def transformation(embeddings):
if horizontal:
embeddings = np.swapaxes(embeddings,1,2)
embeddings = np.concatenate((embeddings, embeddings[:1]))
s, _, d = embeddings[0].shape
inner_size = s-2 # use the innser size, becouse the outter ones dont work right in the inside of an images
num_of_embeddings = (len(embeddings)-1)*inner_size
a = np.empty((num_of_embeddings,s,d))
for i in range(num_of_embeddings):
e0 = embeddings[i//inner_size]
e1 = embeddings[(i//inner_size)+1]
j0 = inner_size-1-(i%inner_size)
j1 = (i%inner_size) +1
w0 = np.round(j0/inner_size, 4)
w1 = np.round(j1/inner_size, 4)
a[i, :, :] = e0[j0, :]*w0 + e1[j1, :]*w1
f = scipy.interpolate.interp1d(range(len(a)), a, axis=0, kind="linear")
embeddings = []
for i in np.linspace(0,num_of_embeddings-s,frame_count, endpoint=True):
b = np.array([f(k) for k in np.linspace(i, i+s-1, s)])
embeddings.append(b)
embeddings = np.array(embeddings)
if horizontal:
embeddings = np.swapaxes(embeddings,1,2)
return embeddings
return transformation
def interpolation_linear(frame_count):
def transformation(embeddings):
embeddings = np.concatenate((embeddings, embeddings[:1]))
f = scipy.interpolate.interp1d(range(len(embeddings)), embeddings, axis=0, kind="linear")
embeddings = f(np.linspace(0, len(embeddings)-1, num=frame_count, endpoint=False))
return embeddings
return transformation
def _apply_weights(embeddings, weights):
s, _, d = embeddings[0].shape
weights = weights.reshape((s,s,1))
weights = np.tile(weights, (1,1,d))
return np.array([e0*weights+e1*(1-weights) for e0, e1 in zip(embeddings, np.roll(embeddings, 1, axis=0))])
def weight_mid(border_size):
def transformation(embeddings):
s, _, d = embeddings[0].shape
weights = np.zeros((s,s))
weights[border_size:s-border_size,border_size:s-border_size] = 1
weights = gaussian_filter(weights, sigma=2)
return _apply_weights(embeddings, weights)
return transformation
def weight_0to1(horizontal=False):
def transformation(embeddings):
s, _, d = embeddings[0].shape
weights = np.linspace(np.zeros(s), np.ones(s), s, endpoint=True)
if horizontal:
weights = weights.T
return _apply_weights(embeddings, weights)
return transformation
def add(const):
return lambda embeddings: np.array([e+const for e in embeddings])
def mult(const):
return lambda embeddings: np.array([e*const for e in embeddings])
def power(const):
return lambda embeddings: np.array([e**const for e in embeddings])
def mod(const):
return lambda embeddings: np.array([np.mod(e, const) for e in embeddings])
def minus_each_other():
return lambda embeddings: np.array([e0-e1 for e0, e1 in zip(embeddings, np.roll(embeddings, 1, axis=0))])
def mult_each_other():
return lambda embeddings: np.array([e0*e1 for e0, e1 in zip(embeddings, np.roll(embeddings, 1, axis=0))])
def roll(axis=-1):
return lambda embeddings: np.roll(embeddings, shift=1, axis=axis)
def loopable_noise(frame_count, local_factor=1, noise_speed=2, noise_inpact=0.2):
def transformation(embeddings):
embeddings = np.concatenate((embeddings, embeddings[:1]))
count, w, h, d = embeddings.shape
xy_indices = [[x,y] for x in range(w) for y in range(h)]
interpolation_space = np.linspace(0, 1, num=count, endpoint=True)
interpolation_funcs = [[None for i in range(w)] for j in range(h)]
for x, y in xy_indices:
interpolation_funcs[x][y] = scipy.interpolate.interp1d(interpolation_space, embeddings[:,x,y,:], axis=0, kind="linear")
os = OpenSimplex(seed=np.random.randint(100000))
new_embeddings = []
for i in range(frame_count):
e = np.empty((w,h,d))
for x, y in xy_indices:
pos_on_circle = i/frame_count*np.pi*2
radius = noise_speed
fs = w*(1/local_factor)
noise = os.noise4d(x / fs, y / fs, radius*np.cos(pos_on_circle), radius*np.sin(pos_on_circle))
value = (i/frame_count + noise*noise_inpact)%1
e[x,y] = interpolation_funcs[x][y](value)
new_embeddings.append(e)
return new_embeddings
return transformation