-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacs_data_processing_tract.R
752 lines (629 loc) · 47.3 KB
/
acs_data_processing_tract.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
##### Load libraries, set working directory #####
if(!require(pacman)){install.packages("pacman");library(pacman)}
p_load(tidyverse, tidycensus, tigris, rio, sf, scales, mapview)
options(
scipen = 999,
digits = 4,
tigris_class = "sf",
tigris_use_cache = T
)
`%notin%` <- function(lhs, rhs) !(lhs %in% rhs)
range01 <- function(x, ...){(x - min(x, ...)) / (max(x, ...) - min(x, ...))}
cv_interp <- function(cv) {
ret <- case_when(cv == 0 | cv > 0.4 ~ "3. Not reliable",
cv >= 0.2 & cv < 0.4 ~ "2. Use caution",
cv < 0.2 ~ "1. Reliable",
is.na(cv) ~ "3. Not reliable")
}
aggregate_long <- function(df, vars2collapse, ...) {
group_var <- enquos(...)
df %>%
filter(variable %in% vars2collapse) %>%
group_by(!!! group_var) %>%
summarize(est = sum(estimate),
moe = moe_sum(moe, estimate))
}
aggregate_long_varnum <- function(df, varnums2collapse, ...) {
group_var <- enquos(...)
df %>%
filter(varnum %in% varnums2collapse) %>%
group_by(!!! group_var) %>%
summarize(est = sum(estimate),
moe = moe_sum(moe, estimate))
}
make_summary_var <- function(df) {
df %>% filter(variable == "Total") %>% rename(summary_est = est, summary_moe = moe) %>% select(GEOID, year, subgroup, summary_est, summary_moe)
}
add_pct <- function(aggd_df) {
ret <- aggd_df %>%
left_join(., make_summary_var(aggd_df), by = c('GEOID', 'year', 'subgroup')) %>%
group_by(GEOID, year, variable) %>%
mutate(pct_est = est / summary_est,
pct_moe = moe_prop(est, summary_est, moe, summary_moe),
parameter = "Percent") %>%
select(GEOID, year, parameter, subgroup, variable, est = pct_est, moe = pct_moe, universe, topic) %>% ungroup() %>%
rbind(., aggd_df) %>% ungroup()
}
moe_chgprop <- function(moe_y1, moe_y2, est_y1, est_y2) {
## Calculate moe for change in proportions
moe <- (sqrt(moe_y2 ^ 2 + (est_y2 / est_y1) ^ 2 * moe_y1 ^ 2 )) / est_y1
return(moe)
}
sig_test <- function(est_y1, est_y2, moe_y1, moe_y2) {
## Determine if there is a difference between two numbers; TRUE values are significant at 90% confidence
se1 <- moe_y1 / 1.645
se2 <- moe_y2 / 1.645
test <- abs((est_y1 - est_y2) / sqrt(se1 ^ 2 + se2 ^ 2))
return(test > 1.645)
}
overlap_se <- function(y1, y2, moe_y1, moe_y2) {
se1 <- moe_y1 / 1.645
se2 <- moe_y2 / 1.645
c <- (y2 - y1) / 5
sex1x2 <- sqrt(1 - c) * sqrt(se1 ^ 2 + se2 ^ 2)
return(sex1x2)
}
var2race <- function(raw_variable) {
ret <- case_when(substr(raw_variable, 7, 7) == "_" ~ "All",
substr(raw_variable, 7, 7) == "A" ~ "White, not Hispanic",
substr(raw_variable, 7, 7) == "B" ~ "Black, not Hispanic",
substr(raw_variable, 7, 7) == "C" ~ "Native American, not Hispanic",
substr(raw_variable, 7, 7) == "D" ~ "Asian, not Hispanic",
substr(raw_variable, 7, 7) == "E" ~ "Hawaiian or Pacific Islander, not Hispanic",
substr(raw_variable, 7, 7) == "F" ~ "Another race, not Hispanic",
substr(raw_variable, 7, 7) == "G" ~ "Two or more races, not Hispanic",
substr(raw_variable, 7, 7) == "H" ~ "White alone, not Hispanic",
substr(raw_variable, 7, 7) == "I" ~ "Hispanic or Latino",
TRUE ~ NA_character_)
return(ret)
}
##### Resources #####
acs18 <- load_variables(2018, "acs5", cache = TRUE)
cpi <- rio::import("resources/cpi-u-rs_1950-current.xlsx") %>% select(year, inflation_factor_2019)
pdx_msa_definition <- c('41005', '41009', '41051', '41067', '41071', '53011', '53059')
msa.sf <- tigris::tracts("AZ", cb = T) %>% filter(COUNTYFP == "019") %>% select(GEOID)
state_to_download <- "AZ"
county_to_download <- "Pima"
##### Tract-level estimates #####
### Education tables
education <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B15002",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
edu_aggd<- rbind(
education %>% aggregate_long_varnum(., varnums2collapse = c(3:14, 20:31), GEOID, year) %>% mutate(variable = "No four-year degree", subgroup = "All", universe = "Population 25 Years and Over", parameter = "Total", topic = "Educational Attainment"),
education %>% aggregate_long_varnum(., varnums2collapse = c(15:18, 32:35), GEOID, year) %>% mutate(variable = "Bachelor's or higher", subgroup = "All", universe = "Population 25 Years and Over", parameter = "Total", topic = "Educational Attainment"),
education %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Population 25 Years and Over", parameter = "Total", topic = "Educational Attainment")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Education by race #####
education_by_race <- map_df(c(2010:2019), function(acs_year) {
tabs <- map_chr(c("A", "B", "C", "D", "E", "F", "G", "H", "I"), ~ paste0("C15002",.x))
ret <- map_df(tabs, function(tab){
get_acs(geography = "tract", state = state_to_download, county = county_to_download, table = tab, year = acs_year) %>%
mutate(year = acs_year)
})
}) %>%
mutate(subgroup = var2race(variable),
varnum = as.numeric(str_sub(variable, -3)))
education_by_race_aggd1 <- rbind(
education_by_race %>% aggregate_long_varnum(., varnums2collapse = c(3,4,5,8,9,10), GEOID, year, subgroup) %>% mutate(variable = "No four-year degree", universe = "Population 25 Years and Over", parameter = "Total", topic = "Educational Attainment"),
education_by_race %>% aggregate_long_varnum(., varnums2collapse = c(6, 11), GEOID, year, subgroup) %>% mutate(variable = "Bachelor's or higher", universe = "Population 25 Years and Over", parameter = "Total", topic = "Educational Attainment"),
education_by_race %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year, subgroup) %>% mutate(variable = "Total", universe = "Population 25 Years and Over", parameter = "Total", topic = "Educational Attainment")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
tmp0 <- rbind(education_by_race_aggd1, edu_aggd)
tmp0 %>%
filter(parameter == "Total", subgroup == "All") %>%
select(GEOID, year, variable, sumest = est, summoe = moe) -> tmp1
tmp0 %>%
filter(parameter == "Total", subgroup == "White alone, not Hispanic") %>%
select(GEOID, year, variable, whest = est, whmoe = moe) -> tmp2
edu_final <- left_join(tmp1, tmp2, by = c("GEOID", "year", "variable")) %>%
mutate(est = sumest - whest,
moe = sqrt(whmoe^2 + summoe^2), ## MOE for subtracted variables same as adding https://www.census.gov/content/dam/Census/programs-surveys/acs/guidance/training-presentations/20170419_MOE_Transcript.pdf
subgroup = "People of Color", universe = "Population 25 Years and Over", parameter = "Total", topic = "Educational Attainment", parameter = "Total") %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
add_pct(.) %>%
filter(!(parameter == "Percent" & variable == "Total")) %>%
rbind(., tmp0) %>%
arrange(GEOID, year, variable)
##### Age (youth and elderly) tables ####
age <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B01001",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
age_aggd <- rbind(
age %>% aggregate_long_varnum(., varnums2collapse = c(3:6, 27:30), GEOID, year) %>% mutate(variable = "Under 18", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Age"),
age %>% aggregate_long_varnum(., varnums2collapse = c(3, 4, 27, 28), GEOID, year) %>% mutate(variable = "Under 10", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Age"),
age %>% aggregate_long_varnum(., varnums2collapse = c(7:19, 31:43), GEOID, year) %>% mutate(variable = "Age 18 to 64", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Age"),
age %>% aggregate_long_varnum(., varnums2collapse = c(20:25, 44:49), GEOID, year) %>% mutate(variable = "Over 64", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Age"),
age %>% aggregate_long_varnum(., varnums2collapse = c(23:25, 47:49), GEOID, year) %>% mutate(variable = "Over 74", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Age"),
age %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Age")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
age_by_race <- map_df(c(2010:2019), function(acs_year) {
tabs <- map_chr(c("A", "B", "C", "D", "E", "F", "G", "H", "I"), ~ paste0("B01001",.x))
ret <- map_df(tabs, function(tab){
get_acs(geography = "tract", state = state_to_download, county = county_to_download, table = tab, year = acs_year) %>%
mutate(year = acs_year)
})
}) %>%
mutate(subgroup = var2race(variable),
varnum = as.numeric(str_sub(variable, -3)))
age_by_race_aggd1 <- rbind(
age_by_race %>% aggregate_long_varnum(., varnums2collapse = c(3:6, 18:21), GEOID, year, subgroup) %>% mutate(variable = "Under 18", universe = "Total Population", parameter = "Total", topic = "Age"),
age_by_race %>% aggregate_long_varnum(., varnums2collapse = c(3, 4, 18, 19), GEOID, year, subgroup) %>% mutate(variable = "Under 10", universe = "Total Population", parameter = "Total", topic = "Age"),
age_by_race %>% aggregate_long_varnum(., varnums2collapse = c(7:13, 22:28), GEOID, year, subgroup) %>% mutate(variable = "Age 18 to 64", universe = "Total Population", parameter = "Total", topic = "Age"),
age_by_race %>% aggregate_long_varnum(., varnums2collapse = c(14:16, 29:31), GEOID, year, subgroup) %>% mutate(variable = "Over 64", universe = "Total Population", parameter = "Total", topic = "Age"),
age_by_race %>% aggregate_long_varnum(., varnums2collapse = c(15, 16, 30, 31), GEOID, year, subgroup) %>% mutate(variable = "Over 74", universe = "Total Population", parameter = "Total", topic = "Age"),
age_by_race %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year, subgroup) %>% mutate(variable = "Total", universe = "Total Population", parameter = "Total", topic = "Age")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
tmp0 <- rbind(age_by_race_aggd1, age_aggd)
tmp0 %>%
filter(parameter == "Total", subgroup == "All") %>%
select(GEOID, year, variable, sumest = est, summoe = moe) -> tmp1
tmp0 %>%
filter(parameter == "Total", subgroup == "White alone, not Hispanic") %>%
select(GEOID, year, variable, whest = est, whmoe = moe) -> tmp2
age_final <- left_join(tmp1, tmp2, by = c("GEOID", "year", "variable")) %>%
mutate(est = sumest - whest,
moe = sqrt(whmoe^2 + summoe^2), ## MOE for subtracted variables same as adding https://www.census.gov/content/dam/Census/programs-surveys/acs/guidance/training-presentations/20170419_MOE_Transcript.pdf
subgroup = "People of Color", universe = "Total Population", parameter = "Total", topic = "Age", parameter = "Total") %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
add_pct(.) %>%
filter(!(parameter == "Percent" & variable == "Total")) %>%
rbind(., tmp0) %>%
arrange(GEOID, year, variable)
##### Tenure tables ####
tenure <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B25003",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
ten_aggd <- rbind(
tenure %>% aggregate_long_varnum(., varnums2collapse = c(3), GEOID, year) %>% mutate(variable = "Renters", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure"),
tenure %>% aggregate_long_varnum(., varnums2collapse = c(2), GEOID, year) %>% mutate(variable = "Owners", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure"),
tenure %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Median age housing stock tables ####
stock_age <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B25037",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
stock_aggd <- rbind(
stock_age %>% aggregate_long_varnum(., varnums2collapse = c(3), GEOID, year) %>% mutate(variable = "Median Age of Housing Stock", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Age of Housing Stock"),
stock_age %>% aggregate_long_varnum(., varnums2collapse = c(2), GEOID, year) %>% mutate(variable = "Median Age of Housing Stock", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Age of Housing Stock"),
stock_age %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Median Age of Housing Stock", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Age of Housing Stock")
) %>% ungroup() %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
## Do not use this below, since it messes with the legend rendering
# stock_aggdpct <- stock_aggd %>%
# mutate(parameter = "Percent") %>%
# rbind(., stock_aggd)
##### Race tables ####
race <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B03002",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
race_aggd <- rbind(
race %>% aggregate_long_varnum(., varnums2collapse = c(3), GEOID, year) %>% mutate(variable = "White alone, not Hispanic", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(4), GEOID, year) %>% mutate(variable = "Black alone, not Hispanic", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(5), GEOID, year) %>% mutate(variable = "Native American alone, not Hispanic", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(6), GEOID, year) %>% mutate(variable = "Asian alone, not Hispanic", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(7), GEOID, year) %>% mutate(variable = "Hawaiian or Pacific Isalnder alone, not Hispanic", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(8), GEOID, year) %>% mutate(variable = "Another race alone, not Hispanic", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(9), GEOID, year) %>% mutate(variable = "Two or more races, not Hispanic", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(12), GEOID, year) %>% mutate(variable = "Hispanic or Latino", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(4, 5, 7, 12), GEOID, year) %>% mutate(variable = "Black, Indigenous, Latinx", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(4, 5, 6, 7, 8, 9, 12), GEOID, year) %>% mutate(variable = "People of Color", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race"),
race %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Total Population", parameter = "Total", topic = "Race")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
###### MHI tables ####
mhi_by_race <- map_df(c(2010:2019), function(acs_year) {
tabs <- map_chr(c("", "A", "B", "C", "D", "E", "F", "G", "H", "I"), ~ paste0("B19013",.x))
ret <- map_df(tabs, function(tab){
get_acs(geography = "tract", state = state_to_download, county = county_to_download, table = tab, year = acs_year) %>%
mutate(year = acs_year)
})
}) %>%
mutate(subgroup = var2race(variable),
varnum = as.numeric(str_sub(variable, -3)))
mhi <- mhi_by_race %>%
left_join(., cpi, by = "year") %>%
mutate(est = estimate * inflation_factor_2019,
moe = moe * inflation_factor_2019,
variable = "Median Household Income", universe = "Households", parameter = "Total", topic = "Income") %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable, subgroup) %>%
filter(!(parameter == "Percent" & variable == "Total"))
## Do not use this below, since it messes with the legend rendering
# mhi_aggdpct <- mhi %>%
# mutate(parameter = "Percent") %>%
# rbind(., mhi)
##### Poverty tables ####
poverty <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "C17002",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
pov_aggd <- rbind(
poverty %>% aggregate_long_varnum(., varnums2collapse = c(2,3), GEOID, year) %>% mutate(variable = "Income Under 1x Poverty", subgroup = "All", universe = "Population for Whom Poverty Status Is Determined", parameter = "Total", topic = "Poverty"),
poverty %>% aggregate_long_varnum(., varnums2collapse = c(4:8), GEOID, year) %>% mutate(variable = "Income Over 1x Poverty", subgroup = "All", universe = "Population for Whom Poverty Status Is Determined", parameter = "Total", topic = "Poverty"),
poverty %>% aggregate_long_varnum(., varnums2collapse = c(2:7), GEOID, year) %>% mutate(variable = "Income Under 2x Poverty", subgroup = "All", universe = "Population for Whom Poverty Status Is Determined", parameter = "Total", topic = "Poverty"),
poverty %>% aggregate_long_varnum(., varnums2collapse = c(8), GEOID, year) %>% mutate(variable = "Income Over 2x Poverty", subgroup = "All", universe = "Population for Whom Poverty Status Is Determined", parameter = "Total", topic = "Poverty"),
poverty %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Population for Whom Poverty Status Is Determined", parameter = "Total", topic = "Poverty")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Disability by race and age for years 2012 - 2018 (NOT AVAILABLE PRIOR TO 2012) ####
disability_by_race_by_age <- map_df(c(2012:2019), function(acs_year) {
tabs <- map_chr(c("", "A", "B", "C", "D", "E", "F", "G", "H", "I"), ~ paste0("B18101",.x))
ret <- map_df(tabs, function(tab){
get_acs(geography = "tract", state = state_to_download, county = county_to_download, table = tab, year = acs_year) %>%
mutate(year = acs_year)
})
}) %>%
mutate(subgroup = var2race(variable),
varnum = as.numeric(str_sub(variable, -3)))
disability_by_age <- disability_by_race_by_age %>% filter(subgroup == "All")
disability_by_race_by_age <- disability_by_race_by_age %>% filter(subgroup != "All")
disability_status <- rbind(
disability_by_race_by_age %>% aggregate_long_varnum(., varnums2collapse = c(3,6,9), GEOID, year, subgroup) %>% mutate(variable = "With a disability", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Disability Status"),
disability_by_race_by_age %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year, subgroup) %>% mutate(variable = "Total", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Disability Status"),
disability_by_age %>% aggregate_long_varnum(., varnums2collapse = c(4,7,10,13,16,19,23,26,29,32,35,38), GEOID, year) %>% mutate(variable = "With a disability", subgroup = "All", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Disability Status"),
disability_by_age %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Disability Status"),
disability_by_age %>% aggregate_long_varnum(., varnums2collapse = c(16, 19, 35, 38), GEOID, year) %>% mutate(variable = "With a disability", subgroup = "Elders 65+", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Disability Status"),
disability_by_age %>% aggregate_long_varnum(., varnums2collapse = c(15, 18, 34, 37), GEOID, year) %>% mutate(variable = "Total", subgroup = "Elders 65+", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Disability Status")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
###### LEP tables #####
lepvintage <- map_df(c(2010:2015), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B16002",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
lep <- map_df(c(2016:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "C16002",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
leps <- rbind(lepvintage, lep)
lep_aggd <- rbind(
leps %>% aggregate_long_varnum(., varnums2collapse = c(4, 7, 10, 13), GEOID, year) %>% mutate(variable = "LEP Households", subgroup = "All", universe = "Households", parameter = "Total", topic = "Limited English Proficiency"),
leps %>% aggregate_long_varnum(., varnums2collapse = c(5, 8, 11, 14), GEOID, year) %>% mutate(variable = "Non-LEP Households", subgroup = "All", universe = "Households", parameter = "Total", topic = "Limited English Proficiency"),
leps %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Households", parameter = "Total", topic = "Limited English Proficiency")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Housing cost burden tables #####
hcb <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B25106",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
hcb_aggd <- rbind(
hcb %>% aggregate_long_varnum(., varnums2collapse = c(6, 10, 14, 18, 22, 28, 32, 36, 40, 44), GEOID, year) %>% mutate(variable = "CB >30%", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Housing Cost"),
hcb %>% aggregate_long_varnum(., varnums2collapse = c(4,8,12,16,20,26,30,34,38,42,5,9,13,17,21,27,31,35,39,43), GEOID, year) %>% mutate(variable = "CB <30%", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Housing Cost"),
hcb %>% aggregate_long_varnum(., varnums2collapse = c(28, 32, 36, 40, 44), GEOID, year) %>% mutate(variable = "CB >30%", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Housing Cost"),
hcb %>% aggregate_long_varnum(., varnums2collapse = c(6, 10, 14, 18, 22), GEOID, year) %>% mutate(variable = "CB >30%", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Housing Cost"),
hcb %>% aggregate_long_varnum(., varnums2collapse = c(27, 31, 35, 39, 43, 26,30,34,38,42), GEOID, year) %>% mutate(variable = "CB <30%", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Housing Cost"),
hcb %>% aggregate_long_varnum(., varnums2collapse = c(5, 9, 13, 17, 21, 4,8,12,16,20), GEOID, year) %>% mutate(variable = "CB <30%", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Housing Cost"),
hcb %>% aggregate_long_varnum(., varnums2collapse = c(24), GEOID, year) %>% mutate(variable = "Total", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Housing Cost"),
hcb %>% aggregate_long_varnum(., varnums2collapse = c(2), GEOID, year) %>% mutate(variable = "Total", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Housing Cost"),
hcb %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Housing Cost")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Single Mothers #####
## Single mothers and household types by race by year
single_moms <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B11003",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
moms_aggd <- rbind(
single_moms %>% aggregate_long_varnum(., varnums2collapse = c(16), GEOID, year) %>% mutate(variable = "Single mother with own kids < 18", subgroup = "All", universe = "Families", parameter = "Total", topic = "Family Type"),
single_moms %>% aggregate_long_varnum(., varnums2collapse = c(17, 18), GEOID, year) %>% mutate(variable = "Single mother with own kids < 6", subgroup = "All", universe = "Families", parameter = "Total", topic = "Family Type"),
single_moms %>% aggregate_long_varnum(., varnums2collapse = c(10), GEOID, year) %>% mutate(variable = "Single father with own kids < 18", subgroup = "All", universe = "Families", parameter = "Total", topic = "Family Type"),
single_moms %>% aggregate_long_varnum(., varnums2collapse = c(11, 12), GEOID, year) %>% mutate(variable = "Single father with own kids < 6", subgroup = "All", universe = "Families", parameter = "Total", topic = "Family Type"),
single_moms %>% aggregate_long_varnum(., varnums2collapse = c(16, 10), GEOID, year) %>% mutate(variable = "Single parents with own kids < 18", subgroup = "All", universe = "Families", parameter = "Total", topic = "Family Type"),
single_moms %>% aggregate_long_varnum(., varnums2collapse = c(11, 12, 17, 18), GEOID, year) %>% mutate(variable = "Single parents with own kids < 6", subgroup = "All", universe = "Families", parameter = "Total", topic = "Family Type"),
single_moms %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Families", parameter = "Total", topic = "Family Type")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Tenure by Units in Structure #####
ten_by_unitsstr <- map_df(c(2010:2019), function(acs_year) {
q <- get_acs(geography = "tract", state = state_to_download, county = county_to_download,
table = "B25032", year = acs_year, survey = "acs5") %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
labelten <- rio::import("resources/tenunitsstr_varname.xlsx")
ten_by_unitsstr2 <- ten_by_unitsstr %>%
left_join(., acs18, by = c("variable" = "name")) %>%
left_join(., labelten, by = c("label" = "long"))
tenunts <- rbind(
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(3,4), GEOID, year) %>% mutate(variable = "Single-family", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(5,6), GEOID, year) %>% mutate(variable = "2-4 units", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(7,8), GEOID, year) %>% mutate(variable = "5-19 units", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(9), GEOID, year) %>% mutate(variable = "20-49 units", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(10), GEOID, year) %>% mutate(variable = "50+ units", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(11, 12), GEOID, year) %>% mutate(variable = "Mobile home, boat, RV, van", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(2), GEOID, year) %>% mutate(variable = "Total", subgroup = "Owners", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(14,15), GEOID, year) %>% mutate(variable = "Single-family", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(16,17), GEOID, year) %>% mutate(variable = "2-4 units", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(18,19), GEOID, year) %>% mutate(variable = "5-19 units", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(20), GEOID, year) %>% mutate(variable = "20-49 units", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(21), GEOID, year) %>% mutate(variable = "50+ units", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(22, 23), GEOID, year) %>% mutate(variable = "Mobile home, boat, RV, van", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(13), GEOID, year) %>% mutate(variable = "Total", subgroup = "Renters", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(3,4,14,15), GEOID, year) %>% mutate(variable = "Single-family", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(5,6,16,17), GEOID, year) %>% mutate(variable = "2-4 units", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(7,8,18,19), GEOID, year) %>% mutate(variable = "5-19 units", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(9,20), GEOID, year) %>% mutate(variable = "20-49 units", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(10,21), GEOID, year) %>% mutate(variable = "50+ units", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(11,12,22, 23), GEOID, year) %>% mutate(variable = "Mobile home, boat, RV, van", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure"),
ten_by_unitsstr2 %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Occupied Housing Units", parameter = "Total", topic = "Tenure by Units in Structure")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Health Insurance Coverage #####
insurance <- map_df(c(2013:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B27010",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
insurance_aggd <- rbind(
insurance %>% aggregate_long_varnum(., varnums2collapse = c(17,33,50,66), GEOID, year) %>% mutate(variable = "No health insurance coverage", subgroup = "All", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Health Insurance"),
insurance %>% aggregate_long_varnum(., varnums2collapse = c(3,10,19,26,35,42,52,58), GEOID, year) %>% mutate(variable = "With any health insurance coverage", subgroup = "All", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Health Insurance"),
insurance %>% aggregate_long_varnum(., varnums2collapse = c(4,20,36,53), GEOID, year) %>% mutate(variable = "With employer-based health insurance coverage only", subgroup = "All", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Health Insurance"),
insurance %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Civilian Noninstitutionalized Population", parameter = "Total", topic = "Health Insurance")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Food Stamps Recipients #####
foodstamps <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B22001",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
foodstamps_aggd <- rbind(
foodstamps %>% aggregate_long_varnum(., varnums2collapse = c(2), GEOID, year) %>% mutate(variable = "Food stamps received in last 12 months", subgroup = "All", universe = "Households", parameter = "Total", topic = "Food Stamps/SNAP"),
foodstamps %>% aggregate_long_varnum(., varnums2collapse = c(5), GEOID, year) %>% mutate(variable = "No food stamps received in last 12 months", subgroup = "All", universe = "Households", parameter = "Total", topic = "Food Stamps/SNAP"),
foodstamps %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Households", parameter = "Total", topic = "Food Stamps/SNAP")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Internet Access #####
internet <- map_df(c(2017:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B28002",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
comp_w_broadband <- map_df(c(2017:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B28003",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
#### IMPORTANT: Table B28003 can be compared with B28002; HOWEVER, they both cannot be compared with B28009 (by race) for totals;
## Even though B28009 (by race) contains the same variables as B28003, the control totals do not equal one another
comp_w_broadband_by_race <- map_df(c(2017:2019), function(acs_year) {
tabs <- map_chr(c("A", "B", "C", "D", "E", "F", "G", "H", "I"), ~ paste0("B28009",.x))
ret <- map_df(tabs, function(tab){
get_acs(geography = "tract", state = state_to_download, county = county_to_download, table = tab, year = acs_year) %>%
mutate(year = acs_year)
})
}) %>%
mutate(subgroup = var2race(variable),
varnum = as.numeric(str_sub(variable, -3)))
internet_aggd <- rbind(
internet %>% aggregate_long_varnum(., varnums2collapse = c(2, 12), GEOID, year) %>% mutate(variable = "With internet access", subgroup = "All", universe = "Households", parameter = "Total", topic = "Internet Access"),
internet %>% aggregate_long_varnum(., varnums2collapse = c(13), GEOID, year) %>% mutate(variable = "No internet access", subgroup = "All", universe = "Households", parameter = "Total", topic = "Internet Access"),
internet %>% aggregate_long_varnum(., varnums2collapse = c(6), GEOID, year) %>% mutate(variable = "Cellular data plan only", subgroup = "All", universe = "Households", parameter = "Total", topic = "Internet Access"),
comp_w_broadband %>% aggregate_long_varnum(., varnums2collapse = c(4), GEOID, year) %>% mutate(variable = "Has computer with broadband", subgroup = "All", universe = "Households", parameter = "Total", topic = "Internet Access"),
comp_w_broadband %>% aggregate_long_varnum(., varnums2collapse = c(6,5), GEOID, year) %>% mutate(variable = "No computer and/or no internet", subgroup = "All", universe = "Households", parameter = "Total", topic = "Internet Access"),
internet %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year) %>% mutate(variable = "Total", subgroup = "All", universe = "Households", parameter = "Total", topic = "Internet Access")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
internet_race_aggd <- rbind(
comp_w_broadband_by_race %>% aggregate_long_varnum(., varnums2collapse = c(4), GEOID, year, subgroup) %>% mutate(variable = "Has computer with broadband", universe = "Households", parameter = "Total", topic = "Internet Access"),
comp_w_broadband_by_race %>% aggregate_long_varnum(., varnums2collapse = c(6,5), GEOID, year, subgroup) %>% mutate(variable = "No computer and/or no internet", universe = "Households", parameter = "Total", topic = "Internet Access"),
comp_w_broadband_by_race %>% aggregate_long_varnum(., varnums2collapse = c(1), GEOID, year, subgroup) %>% mutate(variable = "Total", universe = "Households", parameter = "Total", topic = "Internet Access")
) %>% ungroup() %>%
add_pct(.) %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable) %>%
filter(!(parameter == "Percent" & variable == "Total"))
internet_final <- rbind(internet_aggd, internet_race_aggd) %>% arrange(GEOID, year, variable)
### Internet for aggregate households of color? -- NOTE: Do not uncomment code below, because the control totals cannot be compared to each other. Leaving here for future note when this question is asked
# #
# # tmp0 <- rbind(internet_race_aggd, internet_aggd)
# #
# # tmp0 %>%
# # filter(parameter == "Total", subgroup == "All") %>%
# # select(GEOID, year, variable, sumest = est, summoe = moe) -> tmp1
# #
# # tmp0 %>%
# # filter(parameter == "Total", subgroup == "White alone, not Hispanic") %>%
# # select(GEOID, year, variable, whest = est, whmoe = moe) -> tmp2
# #
# # internet_final <- left_join(tmp1, tmp2, by = c("GEOID", "year", "variable")) %>%
# # mutate(est = sumest - whest,
# # moe = sqrt(whmoe^2 + summoe^2), ## MOE for subtracted variables same as adding https://www.census.gov/content/dam/Census/programs-surveys/acs/guidance/training-presentations/20170419_MOE_Transcript.pdf
# # subgroup = "Households of Color", universe = "Households", parameter = "Total", topic = "Internet Access") %>%
# # select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
# # filter(!(subgroup == "Households of Color" & variable %in% c("Cellular data plan only", "No internet access", "With internet access"))) %>%
# # add_pct(.) %>%
# # filter(!(parameter == "Percent" & variable == "Total")) %>%
# # rbind(., tmp0) %>%
# # arrange(GEOID, year, variable)
# #
##### Median gross rent table ####
med_gross_rent <- map_df(c(2010:2019), function(acs_year) {
query <- get_acs(geography = "tract",
table = "B25064",
state = state_to_download,
county = county_to_download,
survey = "acs5",
year = acs_year,
cache_table = TRUE) %>%
mutate(year = acs_year)
}) %>% mutate(varnum = as.numeric(str_sub(variable, -3)))
mgr <- med_gross_rent %>%
left_join(., cpi, by = "year") %>%
mutate(subgroup = "All",
est = estimate * inflation_factor_2019,
moe = moe * inflation_factor_2019,
variable = "Median Gross Rent", universe = "Renter-Occupied Households", parameter = "Total", topic = "Housing Cost") %>%
select(GEOID, year, parameter, subgroup, variable, est, moe, universe, topic) %>%
arrange(GEOID, year, variable, subgroup) %>%
filter(!(parameter == "Percent" & variable == "Total"))
##### Final export #####
tract_demo <- rbind(edu_final, age_final, ten_aggd, stock_aggd, race_aggd,
mhi, pov_aggd, disability_status, lep_aggd, hcb_aggd, mgr,
moms_aggd, tenunts, insurance_aggd, foodstamps_aggd, internet_final) %>%
mutate(cv = moe / 1.645,
rel = factor(cv_interp(cv))) %>%
select(GEOID:moe, cv, rel, universe, topic) %>%
mutate(topic = case_when(topic == "Educational Attainment by Race" ~ "Educational Attainment",
topic == "Disability Status by Race" ~ "Disability Status",
topic == "Disability Status by Age" ~ "Disability Status",
TRUE ~ topic),
sumlevel = "140") %>%
select(sumlevel, GEOID, year, topic, parameter, subgroup, universe, variable, est, moe, cv, rel) %>%
arrange(GEOID, topic, variable, parameter, subgroup, year)
saveRDS(tract_demo, "data/pima_tract_demographic_data_2010t2019_20210218.rds")
saveRDS(msa.sf, "data/pima_msa.sf_20210218.rds")
## Test mapping
tract_demo %>%
filter(variable == "Single mother with own kids < 18" ,
parameter == "Percent",
year == 2019) %>%
left_join(., msa.sf, by = "GEOID") %>% st_as_sf() %>%
mapview(., zcol = "est", at = seq(0, .45, 0.05))
tract_demo %>%
filter(variable == "Median Household Income" ,
parameter == "Total",
subgroup == "All",
year == 2010) %>%
left_join(., msa.sf, by = "GEOID") %>% st_as_sf() %>%
mapview(., zcol = "est", at = seq(0, 140000, 20000))
levels(as.factor(tract_demo$variable))