forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_heartrate.m
214 lines (182 loc) · 7.5 KB
/
ft_heartrate.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
function [dataout] = ft_heartrate(cfg, datain)
% FT_HEARTRATE estimates the heart rate from a continuous PPG or ECG channel. It
% returns a new data structure with a continuous representation of the heartrate in
% beats per minute.
%
% Use as
% dataout = ft_heartrate(cfg, data)
% where the input data is a structure as obtained from FT_PREPROCESSING.
%
% The configuration structure has the following options
% cfg.channel = selected channel for processing, see FT_CHANNELSELECTION
% cfg.envelopewindow = scalar, time in seconds
% cfg.peakseparation = scalar, time in seconds
% cfg.threshold = scalar, between 0 and 1 (default = 0.4)
% cfg.feedback = 'yes' or 'no'
% The input data can be preprocessed on the fly using
% cfg.preproc.bpfilter = 'yes' or 'no'
% cfg.preproc.bpfreq = [low high], filter frequency in Hz
%
% See also FT_ELECTRODERMALACTIVITY, FT_HEADMOVEMENT, FT_REGRESSCONFOUND
% Copyright (C) 2018, Robert Oostenveld, DCCN
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the initial part deals with parsing the input options and data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% the ft_preamble function works by calling a number of scripts from
% fieldtrip/utility/private that are able to modify the local workspace
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar datain
ft_preamble provenance datain
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
% do not continue function execution in case the outputfile is present and the user indicated to keep it
return
end
% check if the input data is valid for this function, the input data must be raw
datain = ft_checkdata(datain, 'datatype', 'raw', 'feedback', 'yes');
% ensure that users with old scripts are aware of changes
cfg = ft_checkconfig(cfg, 'forbidden', 'medianwindow');
% set the default options
cfg.channel = ft_getopt(cfg, 'channel', {});
cfg.envelopewindow = ft_getopt(cfg, 'envelopewindow', 10); % in seconds
cfg.peakseparation = ft_getopt(cfg, 'peakseparation', []); % in seconds
cfg.threshold = ft_getopt(cfg, 'threshold', 0.4); % between 0 and 1
cfg.feedback = ft_getopt(cfg, 'feedback', 'yes');
cfg.preproc = ft_getopt(cfg, 'preproc', []);
% the expected rate is around 80 bpm, which means 80/60=1.33 Hz
cfg.preproc.bpfilter = ft_getopt(cfg.preproc, 'bpfilter', 'yes');
cfg.preproc.bpfilttype = ft_getopt(cfg.preproc, 'bpfilttype', 'but');
cfg.preproc.bpfiltdir = ft_getopt(cfg.preproc, 'bpfiltdir', 'twopass');
cfg.preproc.bpfiltord = ft_getopt(cfg.preproc, 'bpfiltord', 2);
cfg.preproc.bpfreq = ft_getopt(cfg.preproc, 'bpfreq', [1/3 10] * 1.33); % in Hz
% copy some of the fields over to the new data structure
dataout = keepfields(datain, {'time', 'fsample', 'sampleinfo', 'trialinfo'});
dataout.label = {'heartrate', 'heartbeatphase', 'heartbeatonset'};
dataout.trial = {}; % this is to be determined in the main code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computation is done in the middle part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cfg.channel = ft_channelselection(cfg.channel, datain.label);
assert(numel(cfg.channel)==1, 'you should specify exactly one channel');
chansel = strcmp(datain.label, cfg.channel{1});
fsample = datain.fsample;
for trllop=1:numel(datain.trial)
dat = datain.trial{trllop}(chansel,:);
label = datain.label(chansel);
time = datain.time{trllop};
if skewness(dat)<0
ft_notice('flipping signal polarity');
dat = -dat;
end
if ~isempty(cfg.peakseparation)
[yupper,ylower] = envelope(dat, round(cfg.peakseparation*fsample), 'peaks');
elseif ~isempty(cfg.envelopewindow)
[yupper,ylower] = envelope(dat, round(cfg.envelopewindow*fsample), 'rms');
end
if istrue(cfg.feedback)
figure
subplot(4,1,1)
hold on
plot(time, dat)
plot(time, yupper, 'g');
plot(time, ylower, 'g');
xlim([min(time) max(time)])
xlabel('time (s)');
title(sprintf('original, trial %d', trllop))
end
if ~isempty(cfg.preproc)
% apply the preprocessing to the selected channel
[dat, label, time, cfg.preproc] = preproc(dat, label, time, cfg.preproc, 0, 0);
end
if ~isempty(cfg.peakseparation)
[yupper,ylower] = envelope(dat, round(cfg.peakseparation*fsample), 'peaks');
elseif ~isempty(cfg.envelopewindow)
[yupper,ylower] = envelope(dat, round(cfg.envelopewindow*fsample), 'rms');
end
if istrue(cfg.feedback)
subplot(4,1,2)
hold on
plot(time, dat)
plot(time, yupper, 'g');
plot(time, ylower, 'g');
xlim([min(time) max(time)])
xlabel('time (s)');
title('filtered')
end
dat = (dat - ylower) ./ (yupper - ylower);
if ~isempty(cfg.peakseparation)
[yupper,ylower] = envelope(dat, round(cfg.peakseparation*fsample), 'peaks');
elseif ~isempty(cfg.envelopewindow)
[yupper,ylower] = envelope(dat, round(cfg.envelopewindow*fsample), 'rms');
end
% find the sample numbers where the filtered value increases above the threshold
[vals, peaks] = findpeaks(dat, 'MinPeakHeight', cfg.threshold);
if istrue(cfg.feedback)
subplot(4,1,3)
hold on
plot(time, dat)
plot(time, yupper, 'g');
plot(time, ylower, 'g');
plot(time(peaks), vals, 'r*');
xlim([min(time) max(time)])
xlabel('time (s)');
title('locally rescaled')
end
% construct a continuous channel with the rate and the phase
rate = nan(size(dat));
phase = nan(size(dat));
for i=1:length(peaks)-1
begsample = peaks(i);
endsample = peaks(i+1);
rate(begsample:endsample) = 60 * fsample/(endsample-begsample); % in bpm
phase(begsample:endsample) = linspace(-pi, pi, (endsample-begsample+1));
end
% also construct a boolean channel with a pulse at the beat onset
tmp = zeros(size(dat));
tmp(peaks) = 1;
% add the continuous channels to the output structure
dataout.trial{trllop} = [rate; phase; tmp];
if istrue(cfg.feedback)
subplot(4,1,4)
plot(time, rate)
ylim([0 160])
xlim([min(time) max(time)])
xlabel('time (s)');
ylabel('rate (bpm)');
end
ft_info('heart rate in trial %d: mean=%.1f, min=%.1f, max=%.1f\n', trllop, nanmean(rate), nanmin(rate), nanmax(rate));
end % for trllop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% deal with the output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous datain
ft_postamble provenance dataout
ft_postamble history dataout
ft_postamble savevar dataout