diff --git a/docs/help/theory.4ct b/docs/help/theory.4ct index 5bd936c..1a99c38 100644 --- a/docs/help/theory.4ct +++ b/docs/help/theory.4ct @@ -1,14 +1,15 @@ \expandafter\ifx\csname doTocEntry\endcsname\relax \expandafter\endinput\fi -\doTocEntry\tocsection{1}{\csname a:TocLink\endcsname{1}{x1-10001}{QQ2-1-1}{Introduction}}{3}\relax -\doTocEntry\toclof{1}{\csname a:TocLink\endcsname{1}{x1-10011}{}{\ignorespaces Deformation of the Bernoulli-Euler beam. Definition of coordinate axes and components of displacement.}}{figure}\relax -\doTocEntry\tocsection{2}{\csname a:TocLink\endcsname{1}{x1-20002}{QQ2-1-3}{Kinematics}}{6}\relax -\doTocEntry\tocsection{3}{\csname a:TocLink\endcsname{1}{x1-30003}{QQ2-1-4}{Constitutive relations}}{7}\relax -\doTocEntry\tocsection{4}{\csname a:TocLink\endcsname{1}{x1-40004}{QQ2-1-5}{Stress resultants}}{8}\relax -\doTocEntry\tocsection{5}{\csname a:TocLink\endcsname{1}{x1-50005}{QQ2-1-6}{Equilibrium}}{10}\relax -\doTocEntry\tocsection{6}{\csname a:TocLink\endcsname{1}{x1-60006}{QQ2-1-7}{Governing equation}}{11}\relax -\doTocEntry\tocsection{7}{\csname a:TocLink\endcsname{1}{x1-70007}{QQ2-1-8}{Finding moment, shear force, and slope from the displacement function}}{12}\relax -\doTocEntry\tocsection{8}{\csname a:TocLink\endcsname{1}{x1-80008}{QQ2-1-9}{Examples}}{14}\relax -\doTocEntry\tocsubsection{8.1}{\csname a:TocLink\endcsname{1}{x1-90008.1}{QQ2-1-10}{Single span beam with constant distributed force}}{14}\relax -\doTocEntry\tocsubsection{8.2}{\csname a:TocLink\endcsname{1}{x1-100008.2}{QQ2-1-11}{Single span beam with a single concentrated force}}{20}\relax -\doTocEntry\tocsubsection{8.3}{\csname a:TocLink\endcsname{1}{x1-110008.3}{QQ2-1-12}{Single span beam with a concentrated force and distributed load using the stiffness method}}{23}\relax +\doTocEntry\toclikesection{}{\csname a:TocLink\endcsname{1}{x1-1000}{QQ2-1-1}{Contents}}{3}\relax +\doTocEntry\tocsection{1}{\csname a:TocLink\endcsname{1}{x1-20001}{QQ2-1-2}{Introduction}}{3}\relax +\doTocEntry\toclof{1}{\csname a:TocLink\endcsname{1}{x1-20011}{}{\ignorespaces Deformation of the Bernoulli-Euler beam. Definition of coordinate axes and components of displacement.}}{figure}\relax +\doTocEntry\tocsection{2}{\csname a:TocLink\endcsname{1}{x1-30002}{QQ2-1-4}{Kinematics}}{6}\relax +\doTocEntry\tocsection{3}{\csname a:TocLink\endcsname{1}{x1-40003}{QQ2-1-5}{Constitutive relations}}{7}\relax +\doTocEntry\tocsection{4}{\csname a:TocLink\endcsname{1}{x1-50004}{QQ2-1-6}{Stress resultants}}{8}\relax +\doTocEntry\tocsection{5}{\csname a:TocLink\endcsname{1}{x1-60005}{QQ2-1-7}{Equilibrium}}{10}\relax +\doTocEntry\tocsection{6}{\csname a:TocLink\endcsname{1}{x1-70006}{QQ2-1-8}{Governing equation}}{11}\relax +\doTocEntry\tocsection{7}{\csname a:TocLink\endcsname{1}{x1-80007}{QQ2-1-9}{Finding moment, shear force, and slope from the displacement function}}{12}\relax +\doTocEntry\tocsection{8}{\csname a:TocLink\endcsname{1}{x1-90008}{QQ2-1-10}{Examples}}{14}\relax +\doTocEntry\tocsubsection{8.1}{\csname a:TocLink\endcsname{1}{x1-100008.1}{QQ2-1-11}{Single span beam with constant distributed force}}{14}\relax +\doTocEntry\tocsubsection{8.2}{\csname a:TocLink\endcsname{1}{x1-110008.2}{QQ2-1-12}{Single span beam with a single concentrated force}}{20}\relax +\doTocEntry\tocsubsection{8.3}{\csname a:TocLink\endcsname{1}{x1-120008.3}{QQ2-1-13}{Single span beam with a concentrated force and distributed load using the stiffness method}}{27}\relax \par diff --git a/docs/help/theory.4tc b/docs/help/theory.4tc index fe520f3..d83ebc1 100644 --- a/docs/help/theory.4tc +++ b/docs/help/theory.4tc @@ -1,13 +1,14 @@ \expandafter\ifx\csname doTocEntry\endcsname\relax \expandafter\endinput\fi -\doTocEntry\tocsection{1}{\csname a:TocLink\endcsname{1}{x1-10001}{QQ2-1-1}{Introduction}}{3}\relax -\doTocEntry\toclof{1}{\csname a:TocLink\endcsname{1}{x1-10011}{}{\ignorespaces Deformation of the Bernoulli-Euler beam. Definition of coordinate axes and components of displacement.}}{figure}\relax -\doTocEntry\tocsection{2}{\csname a:TocLink\endcsname{1}{x1-20002}{QQ2-1-3}{Kinematics}}{6}\relax -\doTocEntry\tocsection{3}{\csname a:TocLink\endcsname{1}{x1-30003}{QQ2-1-4}{Constitutive relations}}{7}\relax -\doTocEntry\tocsection{4}{\csname a:TocLink\endcsname{1}{x1-40004}{QQ2-1-5}{Stress resultants}}{8}\relax -\doTocEntry\tocsection{5}{\csname a:TocLink\endcsname{1}{x1-50005}{QQ2-1-6}{Equilibrium}}{10}\relax -\doTocEntry\tocsection{6}{\csname a:TocLink\endcsname{1}{x1-60006}{QQ2-1-7}{Governing equation}}{11}\relax -\doTocEntry\tocsection{7}{\csname a:TocLink\endcsname{1}{x1-70007}{QQ2-1-8}{Finding moment, shear force, and slope from the displacement function}}{12}\relax -\doTocEntry\tocsection{8}{\csname a:TocLink\endcsname{1}{x1-80008}{QQ2-1-9}{Examples}}{14}\relax -\doTocEntry\tocsubsection{8.1}{\csname a:TocLink\endcsname{1}{x1-90008.1}{QQ2-1-10}{Single span beam with constant distributed force}}{14}\relax -\doTocEntry\tocsubsection{8.2}{\csname a:TocLink\endcsname{1}{x1-100008.2}{QQ2-1-11}{Single span beam with a single concentrated force}}{20}\relax -\doTocEntry\tocsubsection{8.3}{\csname a:TocLink\endcsname{1}{x1-110008.3}{QQ2-1-12}{Single span beam with a concentrated force and distributed load using the stiffness method}}{23}\relax +\doTocEntry\toclikesection{}{\csname a:TocLink\endcsname{1}{x1-1000}{QQ2-1-1}{Contents}}{3}\relax +\doTocEntry\tocsection{1}{\csname a:TocLink\endcsname{1}{x1-20001}{QQ2-1-2}{Introduction}}{3}\relax +\doTocEntry\toclof{1}{\csname a:TocLink\endcsname{1}{x1-20011}{}{\ignorespaces Deformation of the Bernoulli-Euler beam. Definition of coordinate axes and components of displacement.}}{figure}\relax +\doTocEntry\tocsection{2}{\csname a:TocLink\endcsname{1}{x1-30002}{QQ2-1-4}{Kinematics}}{6}\relax +\doTocEntry\tocsection{3}{\csname a:TocLink\endcsname{1}{x1-40003}{QQ2-1-5}{Constitutive relations}}{7}\relax +\doTocEntry\tocsection{4}{\csname a:TocLink\endcsname{1}{x1-50004}{QQ2-1-6}{Stress resultants}}{8}\relax +\doTocEntry\tocsection{5}{\csname a:TocLink\endcsname{1}{x1-60005}{QQ2-1-7}{Equilibrium}}{10}\relax +\doTocEntry\tocsection{6}{\csname a:TocLink\endcsname{1}{x1-70006}{QQ2-1-8}{Governing equation}}{11}\relax +\doTocEntry\tocsection{7}{\csname a:TocLink\endcsname{1}{x1-80007}{QQ2-1-9}{Finding moment, shear force, and slope from the displacement function}}{12}\relax +\doTocEntry\tocsection{8}{\csname a:TocLink\endcsname{1}{x1-90008}{QQ2-1-10}{Examples}}{14}\relax +\doTocEntry\tocsubsection{8.1}{\csname a:TocLink\endcsname{1}{x1-100008.1}{QQ2-1-11}{Single span beam with constant distributed force}}{14}\relax +\doTocEntry\tocsubsection{8.2}{\csname a:TocLink\endcsname{1}{x1-110008.2}{QQ2-1-12}{Single span beam with a single concentrated force}}{20}\relax +\doTocEntry\tocsubsection{8.3}{\csname a:TocLink\endcsname{1}{x1-120008.3}{QQ2-1-13}{Single span beam with a concentrated force and distributed load using the stiffness method}}{27}\relax diff --git a/docs/help/theory.aux b/docs/help/theory.aux index aa9daae..5870913 100644 --- a/docs/help/theory.aux +++ b/docs/help/theory.aux @@ -1,55 +1,63 @@ \relax \ifx\rEfLiNK\UnDef\gdef \rEfLiNK#1#2{#2}\fi -\newlabel{Fig:1}{{\rEfLiNK{x1-10001}{1}}{\rEfLiNK{x1-10001}{5}}} -\newlabel{Eq:1}{{\rEfLiNK{x1-2001r1}{1}}{\rEfLiNK{x1-2001r1}{6}}} -\newlabel{Eq:2}{{\rEfLiNK{x1-2002r2}{2}}{\rEfLiNK{x1-2002r2}{7}}} -\newlabel{Eq:3}{{\rEfLiNK{x1-3001r3}{3}}{\rEfLiNK{x1-3001r3}{7}}} -\newlabel{Eq:4}{{\rEfLiNK{x1-3002r4}{4}}{\rEfLiNK{x1-3002r4}{8}}} -\newlabel{Eq:5}{{\rEfLiNK{x1-4001r5}{5}}{\rEfLiNK{x1-4001r5}{8}}} -\newlabel{Eq:6}{{\rEfLiNK{x1-4002r6}{6}}{\rEfLiNK{x1-4002r6}{8}}} -\newlabel{Eq:7}{{\rEfLiNK{x1-4003r7}{7}}{\rEfLiNK{x1-4003r7}{9}}} -\newlabel{Eq:7b}{{\rEfLiNK{x1-4004r8}{8}}{\rEfLiNK{x1-4004r8}{9}}} -\newlabel{Eq:8}{{\rEfLiNK{x1-5001r9}{9}}{\rEfLiNK{x1-5001r9}{10}}} -\newlabel{Eq:9}{{\rEfLiNK{x1-5002r10}{10}}{\rEfLiNK{x1-5002r10}{10}}} -\newlabel{Eq:10}{{\rEfLiNK{x1-5003r11}{11}}{\rEfLiNK{x1-5003r11}{11}}} -\newlabel{Eq:11}{{\rEfLiNK{x1-6001r12}{12}}{\rEfLiNK{x1-6001r12}{11}}} -\newlabel{Eq:12}{{\rEfLiNK{x1-6002r13}{13}}{\rEfLiNK{x1-6002r13}{12}}} -\newlabel{Eq:13}{{\rEfLiNK{x1-7001r14}{14}}{\rEfLiNK{x1-7001r14}{12}}} -\newlabel{Eq:14}{{\rEfLiNK{x1-7002r15}{15}}{\rEfLiNK{x1-7002r15}{13}}} -\newlabel{Eq:15}{{\rEfLiNK{x1-7003r16}{16}}{\rEfLiNK{x1-7003r16}{13}}} -\newlabel{Eq:16}{{\rEfLiNK{x1-7004r17}{17}}{\rEfLiNK{x1-7004r17}{13}}} -\newlabel{A1}{{\rEfLiNK{x1-9001r18}{18}}{\rEfLiNK{x1-9001r18}{14}}} -\newlabel{A2}{{\rEfLiNK{x1-9002r19}{19}}{\rEfLiNK{x1-9002r19}{14}}} -\newlabel{A3}{{\rEfLiNK{x1-9003r20}{20}}{\rEfLiNK{x1-9003r20}{15}}} -\newlabel{A4}{{\rEfLiNK{x1-9004r21}{21}}{\rEfLiNK{x1-9004r21}{15}}} -\newlabel{A5}{{\rEfLiNK{x1-9005r22}{22}}{\rEfLiNK{x1-9005r22}{16}}} -\newlabel{A6}{{\rEfLiNK{x1-9006r23}{23}}{\rEfLiNK{x1-9006r23}{16}}} -\newlabel{A7}{{\rEfLiNK{x1-9007r24}{24}}{\rEfLiNK{x1-9007r24}{16}}} -\newlabel{A8}{{\rEfLiNK{x1-9008r25}{25}}{\rEfLiNK{x1-9008r25}{17}}} -\newlabel{A9}{{\rEfLiNK{x1-9009r26}{26}}{\rEfLiNK{x1-9009r26}{17}}} -\newlabel{A10}{{\rEfLiNK{x1-9010r27}{27}}{\rEfLiNK{x1-9010r27}{18}}} -\newlabel{A11}{{\rEfLiNK{x1-9011r28}{28}}{\rEfLiNK{x1-9011r28}{18}}} -\newlabel{A12}{{\rEfLiNK{x1-9012r29}{29}}{\rEfLiNK{x1-9012r29}{18}}} -\newlabel{A13}{{\rEfLiNK{x1-9013r30}{30}}{\rEfLiNK{x1-9013r30}{19}}} -\newlabel{A14}{{\rEfLiNK{x1-9014r31}{31}}{\rEfLiNK{x1-9014r31}{19}}} -\newlabel{A15}{{\rEfLiNK{x1-9015r32}{32}}{\rEfLiNK{x1-9015r32}{19}}} -\newlabel{B1}{{\rEfLiNK{x1-10001r33}{33}}{\rEfLiNK{x1-10001r33}{20}}} -\newlabel{B2}{{\rEfLiNK{x1-10002r34}{34}}{\rEfLiNK{x1-10002r34}{20}}} -\newlabel{B3}{{\rEfLiNK{x1-10003r35}{35}}{\rEfLiNK{x1-10003r35}{21}}} -\newlabel{B4}{{\rEfLiNK{x1-10004r36}{36}}{\rEfLiNK{x1-10004r36}{21}}} -\newlabel{B5}{{\rEfLiNK{x1-10005r37}{37}}{\rEfLiNK{x1-10005r37}{21}}} -\newlabel{B6}{{\rEfLiNK{x1-10006r38}{38}}{\rEfLiNK{x1-10006r38}{22}}} -\newlabel{B7}{{\rEfLiNK{x1-10007r39}{39}}{\rEfLiNK{x1-10007r39}{22}}} -\newlabel{B8}{{\rEfLiNK{x1-10008r40}{40}}{\rEfLiNK{x1-10008r40}{22}}} -\newlabel{B9}{{\rEfLiNK{x1-10009r41}{41}}{\rEfLiNK{x1-10009r41}{23}}} -\newlabel{B10}{{\rEfLiNK{x1-10010r42}{42}}{\rEfLiNK{x1-10010r42}{23}}} -\newlabel{C1}{{\rEfLiNK{x1-11001r43}{43}}{\rEfLiNK{x1-11001r43}{24}}} -\newlabel{C2}{{\rEfLiNK{x1-11002r44}{44}}{\rEfLiNK{x1-11002r44}{24}}} -\newlabel{C3}{{\rEfLiNK{x1-11003r45}{45}}{\rEfLiNK{x1-11003r45}{24}}} -\newlabel{C4}{{\rEfLiNK{x1-11004r46}{46}}{\rEfLiNK{x1-11004r46}{25}}} -\newlabel{C5}{{\rEfLiNK{x1-11005r47}{47}}{\rEfLiNK{x1-11005r47}{25}}} -\newlabel{C6}{{\rEfLiNK{x1-11006r48}{48}}{\rEfLiNK{x1-11006r48}{25}}} -\newlabel{C7}{{\rEfLiNK{x1-11007r49}{49}}{\rEfLiNK{x1-11007r49}{26}}} -\newlabel{C8}{{\rEfLiNK{x1-11008r50}{50}}{\rEfLiNK{x1-11008r50}{26}}} -\newlabel{C9}{{\rEfLiNK{x1-11009r51}{51}}{\rEfLiNK{x1-11009r51}{27}}} -\newlabel{C10}{{\rEfLiNK{x1-11010r52}{52}}{\rEfLiNK{x1-11010r52}{27}}} +\newlabel{Fig:1}{{\rEfLiNK{x1-20001}{1}}{\rEfLiNK{x1-20001}{5}}} +\newlabel{Eq:1}{{\rEfLiNK{x1-3001r1}{1}}{\rEfLiNK{x1-3001r1}{6}}} +\newlabel{Eq:2}{{\rEfLiNK{x1-3002r2}{2}}{\rEfLiNK{x1-3002r2}{7}}} +\newlabel{Eq:3}{{\rEfLiNK{x1-4001r3}{3}}{\rEfLiNK{x1-4001r3}{7}}} +\newlabel{Eq:4}{{\rEfLiNK{x1-4002r4}{4}}{\rEfLiNK{x1-4002r4}{8}}} +\newlabel{Eq:5}{{\rEfLiNK{x1-5001r5}{5}}{\rEfLiNK{x1-5001r5}{8}}} +\newlabel{Eq:6}{{\rEfLiNK{x1-5002r6}{6}}{\rEfLiNK{x1-5002r6}{8}}} +\newlabel{Eq:7}{{\rEfLiNK{x1-5003r7}{7}}{\rEfLiNK{x1-5003r7}{9}}} +\newlabel{Eq:7b}{{\rEfLiNK{x1-5004r8}{8}}{\rEfLiNK{x1-5004r8}{9}}} +\newlabel{Eq:8}{{\rEfLiNK{x1-6001r9}{9}}{\rEfLiNK{x1-6001r9}{10}}} +\newlabel{Eq:9}{{\rEfLiNK{x1-6002r10}{10}}{\rEfLiNK{x1-6002r10}{10}}} +\newlabel{Eq:10}{{\rEfLiNK{x1-6003r11}{11}}{\rEfLiNK{x1-6003r11}{11}}} +\newlabel{Eq:11}{{\rEfLiNK{x1-7001r12}{12}}{\rEfLiNK{x1-7001r12}{11}}} +\newlabel{Eq:12}{{\rEfLiNK{x1-7002r13}{13}}{\rEfLiNK{x1-7002r13}{12}}} +\newlabel{Eq:13}{{\rEfLiNK{x1-8001r14}{14}}{\rEfLiNK{x1-8001r14}{12}}} +\newlabel{Eq:14}{{\rEfLiNK{x1-8002r15}{15}}{\rEfLiNK{x1-8002r15}{13}}} +\newlabel{Eq:15}{{\rEfLiNK{x1-8003r16}{16}}{\rEfLiNK{x1-8003r16}{13}}} +\newlabel{Eq:16}{{\rEfLiNK{x1-8004r17}{17}}{\rEfLiNK{x1-8004r17}{13}}} +\newlabel{A1}{{\rEfLiNK{x1-10001r18}{18}}{\rEfLiNK{x1-10001r18}{14}}} +\newlabel{A2}{{\rEfLiNK{x1-10002r19}{19}}{\rEfLiNK{x1-10002r19}{14}}} +\newlabel{A3}{{\rEfLiNK{x1-10003r20}{20}}{\rEfLiNK{x1-10003r20}{15}}} +\newlabel{A4}{{\rEfLiNK{x1-10004r21}{21}}{\rEfLiNK{x1-10004r21}{15}}} +\newlabel{A5}{{\rEfLiNK{x1-10005r22}{22}}{\rEfLiNK{x1-10005r22}{16}}} +\newlabel{A6}{{\rEfLiNK{x1-10006r23}{23}}{\rEfLiNK{x1-10006r23}{16}}} +\newlabel{A7}{{\rEfLiNK{x1-10007r24}{24}}{\rEfLiNK{x1-10007r24}{16}}} +\newlabel{A8}{{\rEfLiNK{x1-10008r25}{25}}{\rEfLiNK{x1-10008r25}{17}}} +\newlabel{A9}{{\rEfLiNK{x1-10009r26}{26}}{\rEfLiNK{x1-10009r26}{17}}} +\newlabel{A10}{{\rEfLiNK{x1-10010r27}{27}}{\rEfLiNK{x1-10010r27}{18}}} +\newlabel{A11}{{\rEfLiNK{x1-10011r28}{28}}{\rEfLiNK{x1-10011r28}{18}}} +\newlabel{A12}{{\rEfLiNK{x1-10012r29}{29}}{\rEfLiNK{x1-10012r29}{18}}} +\newlabel{A13}{{\rEfLiNK{x1-10013r30}{30}}{\rEfLiNK{x1-10013r30}{19}}} +\newlabel{A14}{{\rEfLiNK{x1-10014r31}{31}}{\rEfLiNK{x1-10014r31}{19}}} +\newlabel{A15}{{\rEfLiNK{x1-10015r32}{32}}{\rEfLiNK{x1-10015r32}{19}}} +\newlabel{B1}{{\rEfLiNK{x1-11001r39}{39}}{\rEfLiNK{x1-11001r39}{20}}} +\newlabel{B2}{{\rEfLiNK{x1-11002r46}{46}}{\rEfLiNK{x1-11002r46}{21}}} +\newlabel{B3}{{\rEfLiNK{x1-11003r47}{47}}{\rEfLiNK{x1-11003r47}{21}}} +\newlabel{B4}{{\rEfLiNK{x1-11004r48}{48}}{\rEfLiNK{x1-11004r48}{22}}} +\newlabel{B5}{{\rEfLiNK{x1-11005r49}{49}}{\rEfLiNK{x1-11005r49}{22}}} +\newlabel{B6}{{\rEfLiNK{x1-11006r50}{50}}{\rEfLiNK{x1-11006r50}{22}}} +\newlabel{B7}{{\rEfLiNK{x1-11007r51}{51}}{\rEfLiNK{x1-11007r51}{23}}} +\newlabel{B8}{{\rEfLiNK{x1-11008r52}{52}}{\rEfLiNK{x1-11008r52}{23}}} +\newlabel{B9}{{\rEfLiNK{x1-11009r53}{53}}{\rEfLiNK{x1-11009r53}{24}}} +\newlabel{B10}{{\rEfLiNK{x1-11010r54}{54}}{\rEfLiNK{x1-11010r54}{24}}} +\newlabel{B11}{{\rEfLiNK{x1-11011r55}{55}}{\rEfLiNK{x1-11011r55}{24}}} +\newlabel{B12}{{\rEfLiNK{x1-11012r56}{56}}{\rEfLiNK{x1-11012r56}{25}}} +\newlabel{B13}{{\rEfLiNK{x1-11013r57}{57}}{\rEfLiNK{x1-11013r57}{25}}} +\newlabel{B14}{{\rEfLiNK{x1-11014r58}{58}}{\rEfLiNK{x1-11014r58}{26}}} +\newlabel{B15}{{\rEfLiNK{x1-11015r59}{59}}{\rEfLiNK{x1-11015r59}{26}}} +\newlabel{B16}{{\rEfLiNK{x1-11016r60}{60}}{\rEfLiNK{x1-11016r60}{26}}} +\newlabel{B17}{{\rEfLiNK{x1-11017r61}{61}}{\rEfLiNK{x1-11017r61}{27}}} +\newlabel{B18}{{\rEfLiNK{x1-11018r62}{62}}{\rEfLiNK{x1-11018r62}{27}}} +\newlabel{C1}{{\rEfLiNK{x1-12001r63}{63}}{\rEfLiNK{x1-12001r63}{28}}} +\newlabel{C2}{{\rEfLiNK{x1-12002r64}{64}}{\rEfLiNK{x1-12002r64}{28}}} +\newlabel{C3}{{\rEfLiNK{x1-12003r65}{65}}{\rEfLiNK{x1-12003r65}{28}}} +\newlabel{C4}{{\rEfLiNK{x1-12004r66}{66}}{\rEfLiNK{x1-12004r66}{29}}} +\newlabel{C5}{{\rEfLiNK{x1-12005r67}{67}}{\rEfLiNK{x1-12005r67}{29}}} +\newlabel{C6}{{\rEfLiNK{x1-12006r68}{68}}{\rEfLiNK{x1-12006r68}{29}}} +\newlabel{C7}{{\rEfLiNK{x1-12007r69}{69}}{\rEfLiNK{x1-12007r69}{30}}} +\newlabel{C8}{{\rEfLiNK{x1-12008r70}{70}}{\rEfLiNK{x1-12008r70}{30}}} +\newlabel{C9}{{\rEfLiNK{x1-12009r71}{71}}{\rEfLiNK{x1-12009r71}{30}}} +\newlabel{C10}{{\rEfLiNK{x1-12010r72}{72}}{\rEfLiNK{x1-12010r72}{31}}} diff --git a/docs/help/theory.dvi b/docs/help/theory.dvi index 122c94c..67bad0a 100644 Binary files a/docs/help/theory.dvi and b/docs/help/theory.dvi differ diff --git a/docs/help/theory.html b/docs/help/theory.html index 92562de..6a283cb 100644 --- a/docs/help/theory.html +++ b/docs/help/theory.html @@ -20,115 +20,143 @@
This tool employs the Bernoulli-Euler beam theory. This theory, also +
This tool employs the Bernoulli-Euler beam theory. This theory, also known as shear rigid beam theory, is based on the kinematic assumption that
Any plane cross section perpendicular to the undeformed beam’s +
Any plane cross section perpendicular to the undeformed beam’s axis remain plane and perpendicular to the axis throughout the deformation.
This allows us to reduce the three-dimensional problem to a single unknown +
This allows us to reduce the three-dimensional problem to a single unknown function, v(x), known as deflection of the beam.
Navier’s assumption leads to + id="x1-30002">Kinematics +
Navier’s assumption leads to
+ id="x1-3001r1">
| (1) |
+
This displacement field induces an axial strain of
+ id="x1-3002r2">
| (2) |
+
Equation (2) states that a fiber parallel to the beam axis stretches in the bottom +href="#x1-3002r2">2) states that a fiber parallel to the beam axis stretches in the bottom portion of the beam (y < 0) and contracts if the fiber is located above the beam axis (y > 0). The beam axis itself does not stretch. -
+
For a slender beam, we can ignore stress components acting perpendicular to the + id="x1-40003">Constitutive relations +
For a slender beam, we can ignore stress components acting perpendicular to the beam’s axis. Thus, the constitutive relations can be simplified as the 1D-version of Hooke’s law:
+ id="x1-4001r3">
| (3) |
+
where E is the modulus of elasticity. -
The imposed state of deformation induces normal stress proportional to the +
The imposed state of deformation induces normal stress proportional to the strain field (2) as +href="#x1-3002r2">2) as
+ id="x1-4002r4">
| (4) |
+
This relation states that (i) the stress varies linearly with the distance from the beam’s axis, vanishing at the axis, and (ii) the stress is proportional to the curvature of the beam. -
+
The beam sees two stress resultants: the internal moment, + id="x1-50004">Stress resultants +
The beam sees two stress resultants: the internal moment,
+ id="x1-5001r5">
| (5) |
+
and the transverse shear force,
+ id="x1-5002r6">
| (6) |
+
Substituting (4) into (5) yields +href="#x1-4002r4">4) into (5) yields
+ id="x1-5003r7">
| (7) |
+
where
+ id="x1-5004r8">
| (8) |
+
is the area moment of inertia or, short, moment of inertia. -
Note that the modulus of elasticity, Note that the modulus of elasticity, E, characterizes the material, the
moment of inertia, I, characterized the shape of the cross section, and the second
@@ -174,10 +202,10 @@ 4 x
), characterizes the deformation (curvature) of
the beam.
-
+
Equilibrium is formulated in terms of shear forces, Equilibrium
+ Equilibrium is formulated in terms of shear forces, V (x), and internal moments,
5 y-direction, yields
+
where w(x) is the distributed lateral load per length. 5 x) is defined positive if
pointing against the (upward) positive y-axis.
- Moment equilibrium around the out-of-plane axis on the same element
+ Moment equilibrium around the out-of-plane axis on the same element
yields
+
A system for which equations (9) and (10) are sufficient to determine the
+href="#x1-6001r9">9) and (10) are sufficient to determine the
internal moment and shear functions is called statically determinate. Otherwise,
the system is called statically indeterminate. Solving these equations for the
latter requires consideration of the kinematic relation (7) and respective
+href="#x1-5003r7">7) and respective
boundary conditions.
- Equations (9) and (10) may be combined into one equation as
+ Equations (9) and (10) may be combined into one equation as
+
Equation (11) replaces both equilibrium equations (9) and (10).
-
+href="#x1-6003r11">11) replaces both equilibrium equations (9) and (10).
+
The governing equation is obtained by assuming the displacement function,
+ id="x1-70006">Governing equation
+ The governing equation is obtained by assuming the displacement function,
v(x), as the primary unknown and expressing M(x) in (11) using (7) to
+href="#x1-6003r11">11) using (7) to
obtain
+
This equation is known as the governing equation of the Bernoulli-Euler
beam.
- If the beam possesses a constant cross section and is made of one material,
+ If the beam possesses a constant cross section and is made of one material,
then EI(x) = EI = const. and (12) simplifies to
+href="#x1-7001r12">12) simplifies to
+
Equation (13) is what is implemented in this program.
-
+href="#x1-7002r13">13) is what is implemented in this program.
+
Solving (13) and applying suitable boundary conditions yields the displacement
+ Solving (13) and applying suitable boundary conditions yields the displacement
function, v(x), for the beam. The slope, 7
+
It is positive if the cross section rotates counter-clockwise during deformation.
- The moment follows from (7) as
+ The moment follows from (7) as
+
The transverse shear force follows from (11) as
+href="#x1-6003r11">11) as
+
or, for constant EI, simplifies to
-
-
+
Both bending stiffness, Single span beam with constant distributed force
+ Both bending stiffness, EI, and distributed load, w(x) = w0, are constant over
the length of the beam. Thus, (13) simplifies to
+href="#x1-7002r13">13) simplifies to
+
+
+
+
+
+
+
Pinned on both ends yields the boundary conditions
+
+
+
+
+
+
Shear vanishes at x = ℓ and, thus,
+
By symmetry, rotation vanishes at x = ℓ and, thus,
+
-
+
+Continuity conditions:
+src="theory35x.png" alt="v1(a) = v2(a) and θ1(a) = θ2(a)
+" class="math-display" >
-
+ id="x1-6001r9">
(9)
-
+ id="x1-6002r10">
(10)
-
+ id="x1-6003r11">
(11) 6 Governing equation
-
-
+ id="x1-7001r12">
(12)
-
+ id="x1-7002r13">
(13) 7 Finding moment, shear force, and slope from the displacement
+ id="x1-80007">Finding moment, shear force, and slope from the displacement
function
-
-
+ id="x1-8001r14">
(14)
-
+ id="x1-8002r15">
(15)
-
+ id="x1-8003r16">
(16)
-
+ id="x1-8004r17">
(17) 8 Examples
+8 Examples
+8.1 Single span beam with constant distributed force
-
-
+ id="x1-10001r18">
(18)
-
+ id="x1-10002r19">
(19)
-
+ id="x1-10003r20">
(20)
-
+ id="x1-10004r21">
(21)
-
+ id="x1-10005r22">
(22)
-
+ id="x1-10006r23">
(23)
-
+ id="x1-10007r24">
(24)
-
+ id="x1-10008r25">
(25)
-
+ id="x1-10009r26">
(26)
-
+ id="x1-10010r27">
(27)
-
+ id="x1-10011r28">
(28)
-
+ id="x1-10012r29">
(29)
-
+ id="x1-10013r30">
(30)
-
+ id="x1-10014r31">
(31)
-
+ id="x1-10015r32">
(32) 8.2 Single span beam with a single concentrated force
+ id="x1-110008.2">Single span beam with a single concentrated force
+Boundary conditions
+
+
+ (47)
-
+ id="x1-11004r48">
(33)
+Equilibrium of forces for the interval [a - ϵ,a + ϵ]:
+ id="x1-11005r49">
| (34) |
+src="theory36x.png" alt="liϵ→m0 [V(a - ϵ)- P - V (a+ ϵ)] = 0 ⇒ V1(a)- V2(a) = P +" class="math-display" >
+Moment equilibrium for the interval [a - ϵ,a + ϵ]:
+ id="x1-11006r50">
| (35) |
+src="theory37x.png" alt="lϵ→im0 [M (a- ϵ) + ϵV(a - ϵ)- M (a + ϵ)+ ϵV(a + ϵ)] = 0 ⇒ M1 (a) = M2 (a) +" class="math-display" >
+ id="x1-11007r51">
+
| (36) |
+src="theory38x.png" alt="⌊ 0 0 0 1 0 0 0 0 ⌋ ( ) ( ) +| | || c1 || || 0 || +| 0 EI 0 0 0 0 0 0 | ||| ||| ||| ||| +|| || |||| c2 |||| |||| 0 |||| +|| 0 0 0 0 ℓ3∕6 ℓ2∕2 ℓ 1 || |||| |||| |||| |||| +|| || ||| c3 ||| ||| 0 ||| +|| 0 0 0 0 EI ℓ EI 0 0 || ||{ c4 ||} ||{ 0 ||} +|| || = +| a3∕6 a2∕2 a 1 - a3∕6 - a2∕2 - a - 1 | ||| d1 ||| ||| 0 ||| +|| || |||| |||| |||| |||| +|| a2∕2 a 1 0 - a2∕2 - a - 1 0 || |||| d2 |||| |||| 0 |||| +|| || ||| d ||| ||| 0 ||| +|⌈ EIa EI 0 0 - EIa - EI 0 0 |⌉ |||| 3 |||| |||| |||| + ( d4 ) ( P ) + EI 0 0 0 - EI 0 0 0 +" class="math-display" >
+Using α = a∕ℓ, the integration constants are obtained as
+ id="x1-11008r52">
| (37) |
+src="theory39x.png" alt=" { ( ) } + (1---α)P- α--α2 --3α-+-2-Pℓ2- +{c1, c2, c3, c4} = EI , 0, - 6EI , 0 +" class="math-display" >
+and
+ id="x1-11009r53">
| (38) |
+src="theory40x.png" alt=" { ( 2) 2 3 3} +{d1, d2, d3, d4} = --αP-, αP-ℓ, - α--2+-α---Pℓ-, α--Pℓ- + 2EI EI 6EI 6EI +" class="math-display" >
+ id="x1-11010r54">
| (39) |
+src="theory41x.png" alt=" +" class="math-display" >
+ id="x1-11011r55">
| (40) |
+src="theory42x.png" alt=" +" class="math-display" >
+ id="x1-11012r56">
| (41) |
+src="theory43x.png" alt=" +" class="math-display" >
+ id="x1-11013r57">
| (42) |
-
+src="theory44x.png" alt=" +" class="math-display" >
+
+ | (58) |
+
+ | (59) |
+
+ | (60) |
+
+
+ | (61) |
+
+ | (62) |
+
-
+ id="x1-12001r63">
| (43) |
+src="theory50x.png" alt=" +" class="math-display" >
+ id="x1-12002r64">
| (44) |
+src="theory51x.png" alt=" +" class="math-display" >
+ id="x1-12003r65">
| (45) |
- +src="theory52x.png" alt=" +" class="math-display" >
+ id="x1-12004r66">
+
| (46) |
+src="theory53x.png" alt=" +" class="math-display" >
+ id="x1-12005r67">
| (47) |
+src="theory54x.png" alt=" +" class="math-display" >
+ id="x1-12006r68">
| (68) |
-" class="math-display" >
+ id="x1-12007r69">
| (49) |
+src="theory56x.png" alt=" +" class="math-display" >
+ id="x1-12008r70">
| (50) |
+src="theory57x.png" alt=" +" class="math-display" >
+ id="x1-12009r71">
| (51) |
+src="theory58x.png" alt=" + +" class="math-display" >
+ id="x1-12010r72">
| (52) |
+src="theory59x.png" alt=" +" class="math-display" >