diff --git a/README.md b/README.md index 44395a2..86178c6 100644 --- a/README.md +++ b/README.md @@ -29,6 +29,16 @@ can be installed from the Github repo with ``pip``: ``` +or alternatively, you can clone the repository and install it from the source: + +```bash + + git clone https://github.com/yourrepository/pathways.git + cd pathways + pip install -r requirements.txt + +``` + ## Usage @@ -37,21 +47,56 @@ or in a Python interpreter. ### Python +To use the Pathways class, you need to provide it with a datapackage that contains your scenario data, mapping information, and LCA matrices. +The datapackage should be a zip file that contains the following files: + +- `datapackage.json`: a JSON file that describes the contents of the datapackage +- a `mapping` folder containing a `mapping.yaml` file that describes the mapping between the IAM scenario and the LCA databases +- a `inventories` folder containing the LCA matrices as CSV files +- a `scenario_data` folder containing the IAM scenario data as CSV file + ```python from pathways import Pathways -p = Pathways(datapackage="some datapackage.zip") +datapackage_path = "path/to/your/datapackage.zip" +p = Pathways( + datapackage=datapackage_path, + debug=True # optional, if you want to see the logs +) + +# Define your parameters (leave any as None to use all available values) +methods = ["IPCC 2021", "ReCiPe 2016"] +models = ["ModelA", "ModelB"] +scenarios = ["Baseline", "Intervention"] +regions = ["Region1", "Region2"] +years = [2020, 2025] +variables = ["Electricity", "Transport"] + +# Run the calculation p.calculate( - methods=[ - "EF v3.1 - acidification - accumulated exceedance (AE)" - ], - years=[2080, 2090, 2100], - regions=["World"], - scenarios=["SSP2-Base", "SSP2-RCP26",] + methods=methods, + models=models, + scenarios=scenarios, + regions=regions, + years=years, + variables=variables, + characterization=True, + multiprocessing=True, + demand_cutoff=0.001, + use_distributions=0 ) ``` +The list of available LCIA methods can be obtained like so: + +```python + + print(p.lcia_methods) + +``` + + The argument `datapackage` is the path to the datapackage.zip file that describes the scenario and the LCA databases -- see dev/sample. The argument `methods` is a list of methods to be used for the LCA @@ -68,13 +113,16 @@ time-consuming. Once calculated, the results of the LCA calculations are stored in the `.lcia_results` attribute of the `Pathways` object as an ``xarray.DataArray``. +You can display the LCA results with an optional cutoff parameter to filter insignificant data: + + ```python -p.lcia_results + results = p.display_results(cutoff=0.001) + print(results) ``` - It can be further formatted to a pandas' DataFrame or export to a CSV/Excel file using the built-in methods of ``xarray``. @@ -129,7 +177,7 @@ The best way to send feedback is to file an issue on the GitHub repository. ### Contributors * [Romain Sacchi](https://github.com/romainsacchi) -* Alvaro Hahn Menacho (https://github.com/alvarojhahn) +* [Alvaro Hahn Menacho](https://github.com/alvarojhahn) ### Financial Support