forked from howard-hou/BagFormer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_muge.py
executable file
·675 lines (594 loc) · 23.6 KB
/
train_muge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import argparse
import datetime
import json
import os
import random
import shutil
import time
from pathlib import Path
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from ruamel import yaml
from torch.utils.data import DataLoader
from tqdm import tqdm
import utils
from models.loss import tokenwise_similarity_martix
from models.model_helper import EmbeddingBagHelperAutomaton
from models.model_retrieval import ALBEF
from models.model_retrieval_bagwise import BagFormer
from models.model_retrieval_tokenwise import ALBEF_tokenwise
from models.tokenization_bert import BertTokenizer
from models.vit import interpolate_pos_embed
from MUGE_helper.dataset import create_dataloader
from MUGE_helper.evaluation import itm_eval, t2i_pred
from optim import create_optimizer
from scheduler import create_scheduler
def train(
model,
data_loader,
optimizer,
tokenizer,
epoch,
warmup_steps,
device,
scheduler,
config,
embedding_bag_helper,
):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
metric_logger.add_meter(
"loss_itm", utils.SmoothedValue(window_size=1, fmt="{value:.4f}")
)
metric_logger.add_meter(
"loss_ita", utils.SmoothedValue(window_size=1, fmt="{value:.4f}")
)
metric_logger.add_meter(
"loss_twc", utils.SmoothedValue(window_size=1, fmt="{value:.4f}")
)
header = "Train Epoch: [{}]".format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps * step_size
for i, (image, text, idx) in enumerate(
metric_logger.log_every(data_loader, print_freq, header)
):
image = image.to(device, non_blocking=True)
idx = idx.to(device, non_blocking=True)
text_input = tokenizer(text, padding="max_length", max_length=25)
embed_bag_offset, attn_mask = embedding_bag_helper.process(
text_input, return_mask=True
)
embed_bag_offset = torch.LongTensor(embed_bag_offset).to(device)
embed_bag_attn_mask = torch.LongTensor(attn_mask).to(device)
embed_bag_input = dict(
embed_bag_offset=embed_bag_offset, embed_bag_attn_mask=embed_bag_attn_mask
)
text_input = text_input.convert_to_tensors("pt").to(device)
if epoch > 0 or not config["warm_up"]:
alpha = config["alpha"]
else:
alpha = config["alpha"] * min(1, i / len(data_loader))
if args.interaction == "bagwise":
losses = model(
image, text_input, embed_bag_input, alpha=alpha, idx=idx, config=config
)
else:
losses = model(image, text_input, alpha=alpha, idx=idx)
if len(losses) == 3:
loss_ita, loss_itm, loss_twc = losses
loss = loss_ita + loss_itm + loss_twc
elif len(losses) == 2:
loss_ita, loss_itm = losses
loss = loss_ita + loss_itm
loss_twc = loss
else:
raise "num of loss should be two or three"
optimizer.zero_grad()
loss.backward()
optimizer.step()
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_twc=loss_twc.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if epoch == 0 and i % step_size == 0 and i <= warmup_iterations:
scheduler.step(i // step_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {
k: "{:.7f}".format(meter.global_avg)
for k, meter in metric_logger.meters.items()
}
@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config, embedding_bag_helper):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = "Evaluation:"
print("Computing features for evaluation...")
start_time = time.time()
texts = data_loader.dataset.texts
num_img = len(data_loader.dataset.imgs)
num_text = len(texts)
if config["fusion_strategy"] == "late_fusion":
text_atts, text_embeds, text_feats = encode_all_query(
texts, model, tokenizer, device, config["batch_size_test"]
)
elif config["fusion_strategy"] == "early_fusion":
text_atts, text_embeds, text_feats = encode_all_query_embedbag(
texts,
model,
tokenizer,
device,
embedding_bag_helper,
config["batch_size_test"],
)
else:
raise f"fusion_strategy only support early fusion and late fusion"
image_embeds, image_feats = encode_all_image(data_loader, model, device)
# calc_sim_martix, recall
if args.interaction == "cls_token":
text_cls_embeds = text_embeds[:, 0, :]
image_cls_embeds = image_embeds[:, 0, :]
sim_i2t, sim_t2i = cls_token_similarity(image_cls_embeds, text_cls_embeds)
elif args.interaction == "tokenwise":
sim_i2t, sim_t2i = tokenwise_similarity_martix(text_embeds, image_embeds)
elif args.interaction == "bagwise":
text_embedbag_embeds = aggregate_embedbag(
texts,
text_feats,
model,
tokenizer,
embedding_bag_helper,
config["batch_size_test"],
)
sim_i2t, sim_t2i = tokenwise_similarity_martix(
text_embedbag_embeds, image_embeds
)
else:
raise f"model must be in [cls_token, tokenwise, bagwise]"
rank_matrix_i2t = torch.full((num_img, num_text), -100.0).to(device)
merge_matrix_i2t = torch.full((num_img, num_text), -100.0).to(device)
start = 0
end = sim_i2t.size(0)
for i, sims in enumerate(metric_logger.log_every(sim_i2t[start:end], 50, header)):
topk_sim, topk_idx = sims.topk(k=config["k_test"], dim=0)
encoder_output = (
image_feats[start + i].repeat(config["k_test"], 1, 1).float().to(device)
)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(
device
)
output = model.text_encoder(
encoder_embeds=text_feats[topk_idx],
attention_mask=text_atts[topk_idx],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode="fusion",
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
rank_matrix_i2t[start + i, topk_idx] = score
merge_matrix_i2t[start + i, topk_idx] = score + topk_sim
rank_matrix_t2i = torch.full((num_text, num_img), -100.0).to(device)
merge_matrix_t2i = torch.full((num_text, num_img), -100.0).to(device)
start = 0
end = sim_t2i.size(0)
for i, sims in enumerate(metric_logger.log_every(sim_t2i[start:end], 50, header)):
topk_sim, topk_idx = sims.topk(k=config["k_test"], dim=0)
encoder_output = image_feats[topk_idx.cpu()].float().to(device)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(
device
)
output = model.text_encoder(
encoder_embeds=text_feats[start + i].repeat(config["k_test"], 1, 1),
attention_mask=text_atts[start + i].repeat(config["k_test"], 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode="fusion",
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
rank_matrix_t2i[start + i, topk_idx] = score
merge_matrix_t2i[start + i, topk_idx] = score + topk_sim
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Evaluation time {}".format(total_time_str))
return dict(
recall_i2t=sim_i2t.cpu().numpy(),
rank_i2t=rank_matrix_i2t.cpu().numpy(),
merge_i2t=merge_matrix_i2t.cpu().numpy(),
recall_t2i=sim_t2i.cpu().numpy(),
rank_t2i=rank_matrix_t2i.cpu().numpy(),
merge_t2i=merge_matrix_t2i.cpu().numpy(),
)
def aggregate_embedbag(
texts, text_feats, model, tokenizer, embedding_bag_helper, batch_size
):
device = text_feats.device
num_text = len(text_feats)
embedbag_feats_all = []
for i in range(0, num_text, batch_size):
text = [text for text, _ in texts[i : min(num_text, i + batch_size)]]
text_input = tokenizer(
text, padding="max_length", truncation=True, max_length=25
)
embed_bag_offset, attn_mask = embedding_bag_helper.process(
text_input, return_mask=True
)
embed_bag_offset = torch.LongTensor(embed_bag_offset).to(device)
embed_bag_attn_mask = torch.LongTensor(attn_mask).to(device)
batch_text_feats = text_feats[i : min(num_text, i + batch_size)]
batch_size, seq_len, text_width = batch_text_feats.shape
embedding_input = torch.arange(batch_size * seq_len, device=device)
embedbag_feats = F.embedding_bag(
embedding_input,
batch_text_feats.view(-1, text_width),
embed_bag_offset,
mode="sum",
).view(batch_size, -1, text_width)
embedbag_feats = F.normalize(model.text_proj(embedbag_feats), dim=-1)
# mask cls and pad token
embedbag_feats = embedbag_feats * embed_bag_attn_mask.unsqueeze(2)
# pad to same length
embedbag_seq_len = embedbag_feats.shape[1]
embedbag_feats = F.pad(
embedbag_feats,
pad=(0, 0, 0, 25 - embedbag_seq_len, 0, 0),
mode="constant",
value=0,
)
embedbag_feats_all.append(embedbag_feats)
embedbag_feats_all = torch.cat(embedbag_feats_all, dim=0)
return embedbag_feats_all
def encode_all_image(data_loader, model, device):
img_len = len(data_loader.dataset.imgs)
image_feats = torch.zeros((img_len, 257, 768), dtype=torch.float16)
image_embeds = []
ptr = 0
for image, img_id in data_loader:
bs = len(image)
image = image.to(device)
image_feat = model.visual_encoder(image)
image_embed = model.vision_proj(image_feat)
image_embed = F.normalize(image_embed, dim=-1)
image_feat = image_feat.cpu().half()
image_feats[ptr : ptr + bs] = image_feat
image_embeds.append(image_embed.cpu())
ptr += bs
image_embeds = torch.cat(image_embeds, dim=0).to(device)
return image_embeds, image_feats
def encode_all_query_embedbag(
texts, model, tokenizer, device, embedding_bag_helper, text_bs=64
):
text_feats = []
text_embeds = []
text_atts = []
num_text = len(texts)
text_len = 25
for i in range(0, num_text, text_bs):
text = [text for text, _ in texts[i : min(num_text, i + text_bs)]]
text_input = tokenizer(
text, padding="max_length", truncation=True, max_length=text_len
)
embed_bag_offset, attn_mask = embedding_bag_helper.process(
text_input, return_mask=True
)
embed_bag_offset = torch.LongTensor(embed_bag_offset).to(device)
embed_bag_attn_mask = torch.LongTensor(attn_mask).to(device)
text_input = text_input.convert_to_tensors("pt").to(device)
#
text_embeddings = model.text_encoder.embeddings(input_ids=text_input.input_ids)
batch_size, seq_len, text_width = text_embeddings.shape
embedding_input = torch.arange(batch_size * seq_len, device=device)
text_embed_bags = F.embedding_bag(
embedding_input,
text_embeddings.view(-1, text_width),
embed_bag_offset,
mode="sum",
).view(batch_size, -1, text_width)
text_output = model.text_encoder(
inputs_embeds=text_embed_bags,
attention_mask=embed_bag_attn_mask,
mode="text",
)
text_feat = text_output.last_hidden_state
text_feat = F.pad(
text_feat,
pad=(0, 0, 0, text_len - text_feat.shape[1], 0, 0),
mode="constant",
value=0,
)
text_embed = F.normalize(model.text_proj(text_feat), dim=-1)
text_embeds.append(text_embed)
text_feats.append(text_feat)
embed_bag_attn_mask = F.pad(
embed_bag_attn_mask,
pad=(0, text_len - embed_bag_attn_mask.shape[1]),
mode="constant",
value=0,
)
text_atts.append(embed_bag_attn_mask)
text_embeds = torch.cat(text_embeds, dim=0)
text_feats = torch.cat(text_feats, dim=0)
text_atts = torch.cat(text_atts, dim=0)
return text_atts, text_embeds, text_feats
def encode_all_query(texts, model, tokenizer, device, text_bs=64):
text_feats = []
text_embeds = []
text_atts = []
num_text = len(texts)
for i in range(0, num_text, text_bs):
text = [text for text, _ in texts[i : min(num_text, i + text_bs)]]
text_input = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=25,
return_tensors="pt",
).to(device)
text_output = model.text_encoder(
text_input.input_ids, attention_mask=text_input.attention_mask, mode="text"
)
text_feat = text_output.last_hidden_state
text_embed = F.normalize(model.text_proj(text_feat))
text_embeds.append(text_embed)
text_feats.append(text_feat)
text_atts.append(text_input.attention_mask)
text_embeds = torch.cat(text_embeds, dim=0)
text_feats = torch.cat(text_feats, dim=0)
text_atts = torch.cat(text_atts, dim=0)
return text_atts, text_embeds, text_feats
def cls_token_similarity(image_embeds, text_embeds):
sim_i2t = image_embeds @ text_embeds.t()
sim_t2i = text_embeds @ image_embeds.t()
return sim_i2t, sim_t2i
def output_prediction(test_eval_dict, test_loader, key):
pred_list = t2i_pred(
test_eval_dict[key],
test_loader.dataset.texts,
test_loader.dataset.img_idx2img_id,
)
test_outpath = os.path.join(args.output_dir, f"{key}.jsonl")
with open(test_outpath, "w", encoding="utf-8") as w:
for p in pred_list:
p = json.dumps(p, ensure_ascii=False)
w.write(f"{p}\n")
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating muge retrieval dataset")
train_loader, val_loader, test_loader = create_dataloader(
"multimodal_retrieval", config
)
tokenizer = BertTokenizer.from_pretrained(args.text_encoder)
embedding_bag_helper = EmbeddingBagHelperAutomaton(
tokenizer, config["entity_dict_path"], masked_token=["[CLS]", "[PAD]"]
)
#### Model ####
print("Creating model")
if args.interaction == "cls_token":
model = ALBEF(
config=config, text_encoder=args.text_encoder, tokenizer=tokenizer
)
print("create ALBEF cls token model")
elif args.interaction == "tokenwise":
model = ALBEF_tokenwise(
config=config, text_encoder=args.text_encoder, tokenizer=tokenizer
)
print("create ALBEF_tokenwise model")
elif args.interaction == "bagwise":
model = BagFormer(
config=config, text_encoder=args.text_encoder, tokenizer=tokenizer
)
print("create BagFormer model")
else:
raise f"similarity_metric must be in [cls_token, tokenwise, bagwise]"
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location="cpu")
state_dict = checkpoint["model"]
# reshape positional embedding to accomodate for image resolution change
pos_embed_reshaped = interpolate_pos_embed(
state_dict["visual_encoder.pos_embed"], model.visual_encoder
)
state_dict["visual_encoder.pos_embed"] = pos_embed_reshaped
m_pos_embed_reshaped = interpolate_pos_embed(
state_dict["visual_encoder_m.pos_embed"], model.visual_encoder_m
)
state_dict["visual_encoder_m.pos_embed"] = m_pos_embed_reshaped
for key in list(state_dict.keys()):
if "bert" in key:
encoder_key = key.replace("bert.", "")
state_dict[encoder_key] = state_dict[key]
del state_dict[key]
del state_dict["image_queue"]
del state_dict["text_queue"]
msg = model.load_state_dict(state_dict, strict=False)
print("load checkpoint from %s" % args.checkpoint)
print(msg)
model = model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], find_unused_parameters=True
)
model_without_ddp = model.module
# init optimizer and scheduler
arg_opt = utils.AttrDict(config["optimizer"])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config["schedular"])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
start_epoch = 0
max_epoch = config["schedular"]["epochs"]
warmup_steps = config["schedular"]["warmup_epochs"]
best = 0
best_epoch = 0
# set optimizer and scheduler if resume
if args.resume:
try:
optimizer.load_state_dict(checkpoint["optimizer"])
except:
print("can not load optimizer state dict, use init optimizer")
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
start_epoch = checkpoint["epoch"] + 1
print(f"resume mode: optimizer loaded, scheduler loaded")
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, max_epoch):
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(
model,
train_loader,
optimizer,
tokenizer,
epoch,
warmup_steps,
device,
lr_scheduler,
config,
embedding_bag_helper,
)
lr_scheduler.step(epoch + warmup_steps + 1)
eval_dict = evaluation(
model_without_ddp,
val_loader,
tokenizer,
device,
config,
embedding_bag_helper,
)
if utils.is_main_process():
recall_val_result = itm_eval(
eval_dict["recall_i2t"],
eval_dict["recall_t2i"],
val_loader.dataset.txt2img,
val_loader.dataset.img2txt,
)
rank_val_result = itm_eval(
eval_dict["rank_i2t"],
eval_dict["rank_t2i"],
val_loader.dataset.txt2img,
val_loader.dataset.img2txt,
)
merge_val_result = itm_eval(
eval_dict["merge_i2t"],
eval_dict["merge_t2i"],
val_loader.dataset.txt2img,
val_loader.dataset.img2txt,
)
if args.evaluate:
log_stats = {
**{
f"recall_val_{k}": round(v, 3)
for k, v in recall_val_result.items()
},
**{
f"rank_val_{k}": round(v, 3) for k, v in rank_val_result.items()
},
**{
f"merge_val_{k}": round(v, 3)
for k, v in merge_val_result.items()
},
"epoch": epoch,
}
with open(
os.path.join(args.output_dir, "eval.log"), "a", encoding="utf-8"
) as f:
f.write(f"evaluate start\n")
f.write(json.dumps(log_stats) + "\n")
else:
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
**{
f"recall_val_{k}": round(v, 3)
for k, v in recall_val_result.items()
},
**{
f"rank_val_{k}": round(v, 3) for k, v in rank_val_result.items()
},
**{
f"merge_val_{k}": round(v, 3)
for k, v in merge_val_result.items()
},
"epoch": epoch,
}
with open(
os.path.join(args.output_dir, "train.log"), "a", encoding="utf-8"
) as f:
f.write(json.dumps(log_stats) + "\n")
if log_stats["recall_val_r_mean"] > best:
save_obj = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"config": config,
"epoch": epoch,
}
best_model_path = os.path.join(
args.output_dir, "checkpoint_best.pth"
)
torch.save(save_obj, best_model_path)
best = log_stats["recall_val_r_mean"]
best_epoch = epoch
if args.evaluate:
break
torch.cuda.empty_cache()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
if utils.is_main_process() and not args.evaluate:
with open(
os.path.join(args.output_dir, "train.log"), "a", encoding="utf-8"
) as f:
f.write("best epoch: %d" % best_epoch + "\n")
if args.testing:
print(f"{datetime.datetime.now()}, Start testing")
if not args.evaluate:
ckpt = torch.load(best_model_path)
model_without_ddp.load_state_dict(ckpt["model"])
test_eval_dict = evaluation(
model_without_ddp,
test_loader,
tokenizer,
device,
config,
embedding_bag_helper,
)
output_prediction(test_eval_dict, test_loader, "merge_t2i")
output_prediction(test_eval_dict, test_loader, "recall_t2i")
output_prediction(test_eval_dict, test_loader, "rank_t2i")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", default="configs/config_muge.yaml")
parser.add_argument("--output_dir", default="output/retrieval_muge")
parser.add_argument(
"--checkpoint", default="pretrained_model/pretrained_checkpoint.pth"
)
parser.add_argument("--text_encoder", default="bert-base-chinese")
parser.add_argument("--interaction", default="bagwise")
parser.add_argument("--evaluate", action="store_true")
parser.add_argument("--testing", action="store_true")
parser.add_argument("--resume", action="store_true")
parser.add_argument("--device", default="cuda")
parser.add_argument("--seed", default=42, type=int)
args = parser.parse_args()
config = yaml.load(open(args.config, "r"), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, "config.yaml"), "w"))
main(args, config)