|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "487b2dde", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Transforming positions and velocities to and from a Galactocentric frame" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "69e7f209", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "Source: https://docs.astropy.org/en/latest/coordinates/example_gallery_plot_galactocentric_frame.html" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "id": "78b091ce", |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "def plot_positions_and_velocities(gc_rings):\n", |
| 27 | + " fig, axes = plt.subplots(1, 2, figsize=(12, 6), dpi=200)\n", |
| 28 | + " axes[0].plot(gc_rings.x.T, gc_rings.y.T, marker=\"None\", linewidth=3)\n", |
| 29 | + " axes[0].text(-8.0, 0, r\"$\\odot$\", fontsize=20)\n", |
| 30 | + " axes[0].set_xlim(-30, 30)\n", |
| 31 | + " axes[0].set_ylim(-30, 30)\n", |
| 32 | + " axes[0].set_xlabel(\"$x$ [kpc]\")\n", |
| 33 | + " axes[0].set_ylabel(\"$y$ [kpc]\")\n", |
| 34 | + " axes[0].set_title(\"Positions\")\n", |
| 35 | + " axes[1].plot(gc_rings.v_x.T, gc_rings.v_y.T, marker=\"None\", linewidth=3)\n", |
| 36 | + " axes[1].set_xlim(-250, 250)\n", |
| 37 | + " axes[1].set_ylim(-250, 250)\n", |
| 38 | + " axes[1].set_xlabel(f\"$v_x$ [{(u.km / u.s).to_string('latex_inline')}]\")\n", |
| 39 | + " axes[1].set_ylabel(f\"$v_y$ [{(u.km / u.s).to_string('latex_inline')}]\")\n", |
| 40 | + " axes[1].set_title(\"Velocities\")\n", |
| 41 | + " fig.tight_layout()" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "markdown", |
| 46 | + "id": "83278590", |
| 47 | + "metadata": {}, |
| 48 | + "source": [ |
| 49 | + "This example shows a few examples of how to use and customize the\n", |
| 50 | + "`Galactocentric` frame to transform Heliocentric sky\n", |
| 51 | + "positions, distance, proper motions, and radial velocities to a Galactocentric,\n", |
| 52 | + "Cartesian frame, and the same in reverse.\n", |
| 53 | + "\n", |
| 54 | + "The main configurable parameters of the `Galactocentric`\n", |
| 55 | + "frame control the position and velocity of the solar system barycenter within\n", |
| 56 | + "the Galaxy. These are specified by setting the ICRS coordinates of the\n", |
| 57 | + "Galactic center, the distance to the Galactic center (the sun-galactic center\n", |
| 58 | + "line is always assumed to be the x-axis of the Galactocentric frame), and the\n", |
| 59 | + "Cartesian 3-velocity of the sun in the Galactocentric frame. We will first\n", |
| 60 | + "demonstrate how to customize these values, then show how to set the solar motion\n", |
| 61 | + "instead by inputting the proper motion of Sgr A*.\n", |
| 62 | + "\n", |
| 63 | + "Note that, for brevity, we may refer to the solar system barycenter as just \"the\n", |
| 64 | + "sun\" in the examples below.\n", |
| 65 | + "\n", |
| 66 | + "Let's first define a barycentric coordinate and velocity in the ICRS frame.\n", |
| 67 | + "We will use the data for the star HD 39881 from the\n", |
| 68 | + "[Simbad](https://simbad.unistra.fr/simbad/) database:" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": null, |
| 74 | + "id": "fabf0fa4", |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [], |
| 77 | + "source": [ |
| 78 | + "import astropy.coordinates as coord\n", |
| 79 | + "from astropy import units as u\n", |
| 80 | + "c1 = coord.SkyCoord(\n", |
| 81 | + " ra=89.014303 * u.degree,\n", |
| 82 | + " dec=13.924912 * u.degree,\n", |
| 83 | + " distance=(37.59 * u.mas).to(u.pc, u.parallax()),\n", |
| 84 | + " pm_ra_cosdec=372.72 * (u.mas / u.yr),\n", |
| 85 | + " pm_dec=-483.69 * (u.mas / u.yr),\n", |
| 86 | + " radial_velocity=0.37 * (u.km / u.s),\n", |
| 87 | + " frame=\"icrs\",\n", |
| 88 | + ")" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "markdown", |
| 93 | + "id": "58097f73", |
| 94 | + "metadata": {}, |
| 95 | + "source": [ |
| 96 | + "This is a high proper-motion star; suppose we'd like to transform its position\n", |
| 97 | + "and velocity to a Galactocentric frame to see if it has a large 3D velocity\n", |
| 98 | + "as well. To use the Astropy default solar position and motion parameters, we\n", |
| 99 | + "can do the following:" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": null, |
| 105 | + "id": "b2af242d", |
| 106 | + "metadata": {}, |
| 107 | + "outputs": [], |
| 108 | + "source": [ |
| 109 | + "gc1 = c1.transform_to(coord.Galactocentric)" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "markdown", |
| 114 | + "id": "e8ddeafe", |
| 115 | + "metadata": {}, |
| 116 | + "source": [ |
| 117 | + "From here, we can access the components of the resulting\n", |
| 118 | + "`Galactocentric` instance to see the 3D Cartesian\n", |
| 119 | + "velocity components:" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "id": "dd0b6eba", |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "print(gc1.v_x, gc1.v_y, gc1.v_z)\n" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "markdown", |
| 134 | + "id": "7a2aae39", |
| 135 | + "metadata": {}, |
| 136 | + "source": [ |
| 137 | + "The default parameters for the `Galactocentric` frame\n", |
| 138 | + "are detailed in the linked documentation, but we can modify the most commonly\n", |
| 139 | + "changed values using the keywords ``galcen_distance``, ``galcen_v_sun``, and\n", |
| 140 | + "``z_sun`` which set the sun-Galactic center distance, the 3D velocity vector\n", |
| 141 | + "of the sun, and the height of the sun above the Galactic midplane,\n", |
| 142 | + "respectively. The velocity of the sun can be specified as an\n", |
| 143 | + "`Quantity` object with velocity units and is interpreted as a\n", |
| 144 | + "Cartesian velocity, as in the example below. Note that, as with the positions,\n", |
| 145 | + "the Galactocentric frame is a right-handed system (i.e., the Sun is at negative\n", |
| 146 | + "x values) so ``v_x`` is opposite of the Galactocentric radial velocity:" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": null, |
| 152 | + "id": "2d7bef03", |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "\n", |
| 157 | + "v_sun = [11.1, 244, 7.25] * (u.km / u.s) # [vx, vy, vz]\n", |
| 158 | + "gc_frame = coord.Galactocentric(\n", |
| 159 | + " galcen_distance=8 * u.kpc, galcen_v_sun=v_sun, z_sun=0 * u.pc\n", |
| 160 | + ")" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "markdown", |
| 165 | + "id": "08791399", |
| 166 | + "metadata": {}, |
| 167 | + "source": [ |
| 168 | + "We can then transform to this frame instead, with our custom parameters:" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "id": "d8717a8b", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "gc2 = c1.transform_to(gc_frame)\n", |
| 179 | + "print(gc2.v_x, gc2.v_y, gc2.v_z)" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "markdown", |
| 184 | + "id": "c0b353c6", |
| 185 | + "metadata": {}, |
| 186 | + "source": [ |
| 187 | + "It is sometimes useful to specify the solar motion using the\n", |
| 188 | + "[proper motion of Sgr A*](https://arxiv.org/abs/astro-ph/0408107)\n", |
| 189 | + "instead of Cartesian velocity components. With an assumed distance, we can convert\n", |
| 190 | + "proper motion components to Cartesian velocity components using `units`:" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "code", |
| 195 | + "execution_count": null, |
| 196 | + "id": "bccb4ce4", |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [], |
| 199 | + "source": [ |
| 200 | + "galcen_distance = 8 * u.kpc\n", |
| 201 | + "pm_gal_sgrA = [-6.379, -0.202] * (u.mas / u.yr) # from Reid & Brunthaler 2004\n", |
| 202 | + "vy, vz = -(galcen_distance * pm_gal_sgrA).to(u.km / u.s, u.dimensionless_angles())" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "markdown", |
| 207 | + "id": "b8853799", |
| 208 | + "metadata": {}, |
| 209 | + "source": [ |
| 210 | + "We still have to assume a line-of-sight velocity for the Galactic center,\n", |
| 211 | + "which we will again take to be 11 km/s:" |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "code", |
| 216 | + "execution_count": null, |
| 217 | + "id": "cb4ac416", |
| 218 | + "metadata": {}, |
| 219 | + "outputs": [], |
| 220 | + "source": [ |
| 221 | + "vx = 11.1 * (u.km / u.s)\n", |
| 222 | + "v_sun2 = u.Quantity([vx, vy, vz]) # List of Quantity -> a single Quantity\n", |
| 223 | + "gc_frame2 = coord.Galactocentric(\n", |
| 224 | + " galcen_distance=galcen_distance, galcen_v_sun=v_sun2, z_sun=0 * u.pc\n", |
| 225 | + ")\n", |
| 226 | + "gc3 = c1.transform_to(gc_frame2)\n", |
| 227 | + "print(gc3.v_x, gc3.v_y, gc3.v_z)" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "markdown", |
| 232 | + "id": "4e42feb4", |
| 233 | + "metadata": {}, |
| 234 | + "source": [ |
| 235 | + "The transformations also work in the opposite direction. This can be useful\n", |
| 236 | + "for transforming simulated or theoretical data to observable quantities. As\n", |
| 237 | + "an example, we will generate 4 theoretical circular orbits at different\n", |
| 238 | + "Galactocentric radii with the same circular velocity, and transform them to\n", |
| 239 | + "Heliocentric coordinates:" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "code", |
| 244 | + "execution_count": null, |
| 245 | + "id": "a52595f5", |
| 246 | + "metadata": {}, |
| 247 | + "outputs": [], |
| 248 | + "source": [ |
| 249 | + "import matplotlib.pyplot as plt\n", |
| 250 | + "import numpy as np\n", |
| 251 | + "import astropy.coordinates as coord\n", |
| 252 | + "from astropy import units as u\n", |
| 253 | + "ring_distances = np.arange(10, 26, 5) * u.kpc\n", |
| 254 | + "circ_velocity = 220 * (u.km / u.s)\n", |
| 255 | + "phi_grid = np.linspace(90, 270, 512) * u.degree # grid of azimuths\n", |
| 256 | + "ring_rep = coord.CylindricalRepresentation(\n", |
| 257 | + " rho=ring_distances[:, np.newaxis],\n", |
| 258 | + " phi=phi_grid[np.newaxis],\n", |
| 259 | + " z=np.zeros_like(ring_distances)[:, np.newaxis],\n", |
| 260 | + ")\n", |
| 261 | + "angular_velocity = (-circ_velocity / ring_distances).to(\n", |
| 262 | + " u.mas / u.yr, u.dimensionless_angles()\n", |
| 263 | + ")\n", |
| 264 | + "ring_dif = coord.CylindricalDifferential(\n", |
| 265 | + " d_rho=np.zeros(phi_grid.shape)[np.newaxis] * (u.km / u.s),\n", |
| 266 | + " d_phi=angular_velocity[:, np.newaxis],\n", |
| 267 | + " d_z=np.zeros(phi_grid.shape)[np.newaxis] * (u.km / u.s),\n", |
| 268 | + ")\n", |
| 269 | + "ring_rep = ring_rep.with_differentials(ring_dif)\n", |
| 270 | + "gc_rings = coord.SkyCoord(ring_rep, frame=coord.Galactocentric)" |
| 271 | + ] |
| 272 | + }, |
| 273 | + { |
| 274 | + "cell_type": "markdown", |
| 275 | + "id": "de802b0a", |
| 276 | + "metadata": {}, |
| 277 | + "source": [ |
| 278 | + "First, let's visualize the geometry in Galactocentric coordinates. Here are\n", |
| 279 | + "the positions and velocities of the rings; note that in the velocity plot,\n", |
| 280 | + "the velocities of the 4 rings are identical and thus overlaid under the same\n", |
| 281 | + "curve:" |
| 282 | + ] |
| 283 | + }, |
| 284 | + { |
| 285 | + "cell_type": "code", |
| 286 | + "execution_count": null, |
| 287 | + "id": "b9795d77", |
| 288 | + "metadata": {}, |
| 289 | + "outputs": [], |
| 290 | + "source": [ |
| 291 | + "plot_positions_and_velocities(gc_rings)" |
| 292 | + ] |
| 293 | + }, |
| 294 | + { |
| 295 | + "cell_type": "markdown", |
| 296 | + "id": "c83d570e", |
| 297 | + "metadata": {}, |
| 298 | + "source": [ |
| 299 | + "Now we can transform to Galactic coordinates and visualize the rings in\n", |
| 300 | + "observable coordinates:" |
| 301 | + ] |
| 302 | + }, |
| 303 | + { |
| 304 | + "cell_type": "code", |
| 305 | + "execution_count": null, |
| 306 | + "id": "e570027d", |
| 307 | + "metadata": {}, |
| 308 | + "outputs": [], |
| 309 | + "source": [ |
| 310 | + "gal_rings = gc_rings.transform_to(coord.Galactic)\n", |
| 311 | + "fig, ax = plt.subplots(1, 1, figsize=(8, 6), dpi=200)\n", |
| 312 | + "for i in range(len(ring_distances)):\n", |
| 313 | + " ax.plot(\n", |
| 314 | + " gal_rings[i].l.degree,\n", |
| 315 | + " gal_rings[i].pm_l_cosb.value,\n", |
| 316 | + " label=str(ring_distances[i]),\n", |
| 317 | + " marker=\"None\",\n", |
| 318 | + " linewidth=3,\n", |
| 319 | + " )\n", |
| 320 | + "ax.set_xlim(360, 0)\n", |
| 321 | + "ax.set_xlabel(\"$l$ [deg]\")\n", |
| 322 | + "ax.set_ylabel(rf'$\\mu_l \\, \\cos b$ [{(u.mas/u.yr).to_string(\"latex_inline\")}]')\n", |
| 323 | + "ax.legend()\n", |
| 324 | + "plt.draw()" |
| 325 | + ] |
| 326 | + } |
| 327 | + ], |
| 328 | + "metadata": { |
| 329 | + "language_info": { |
| 330 | + "name": "python" |
| 331 | + } |
| 332 | + }, |
| 333 | + "nbformat": 4, |
| 334 | + "nbformat_minor": 5 |
| 335 | +} |
0 commit comments