forked from firmai/financial-machine-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
git_search.py
352 lines (320 loc) · 17.6 KB
/
git_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import datetime
import os
from typing import Dict, List
import pandas as pd
from conf import PROJECT_ROOT_DIR
from git_status import get_repo_list
from git_util import get_github_client, get_repo_attributes_dict
def convert_repo_list_to_df(repo_list, category):
df_list = []
for repo in repo_list:
print(repo)
attr_dict = get_repo_attributes_dict(repo)
attr_dict['name'] = repo.name
attr_dict['comment'] = 'NEW'
attr_dict['category'] = category
attr_dict['repo_path'] = repo.full_name
attr_dict['url'] = 'https://github.com/{}'.format(repo.full_name)
df_list.append(attr_dict)
result_df = pd.DataFrame(df_list)
return result_df
# generic search functions
def search_repo(search_term: str, qualifier_dict: Dict):
g = get_github_client()
qualifier_str = ' '.join(['{}:{}'.format(k, v) for k, v in iter(qualifier_dict.items())])
if qualifier_str != '':
final_search_term = '{} {}'.format(search_term, qualifier_str)
else:
final_search_term = search_term
repo_result = g.search_repositories(final_search_term)
return repo_result
def search_repo_multiple_terms(term_list: List[str],
category: str,
min_stars_number: int = None,
created_at: str = None,
pushed_date: str = None,
drop_duplicate: bool = True
):
"""
:param term_list:
:param category:
:param min_stars_number:
:param created_at:
:param pushed_date:
:param drop_duplicate:
:return:
usage:
>>> term_list = ['deep learning trading', 'deep learning finance', 'reinforcement learning trading',
'reinforcement learning finance']
>>> category = 'Deep Learning And Reinforcement Learning'
>>> min_stars_number = 100
>>> created_at = None
>>> pushed_date = None
>>> drop_duplicate = True
"""
repo_df_list = []
for search_term in term_list:
repo_list = search_repo_simple(search_term, min_stars_number, created_at=created_at, pushed_date=pushed_date)
repo_df = convert_repo_list_to_df(repo_list, category)
repo_df_list.append(repo_df)
combined_df = pd.concat(repo_df_list).reset_index(drop=True)
if drop_duplicate:
combined_df = combined_df.drop_duplicates()
combined_df['finml_added_date'] = datetime.datetime.now()
return combined_df
def search_repo_simple(search_term: str = None,
min_stars_number: int = None,
created_at: str = None,
pushed_date: str = None
):
"""
:param search_term:
:param min_stars_number:
:param created_at:
:param pushed_date:
usage:
>>> search_term = 'machine learning trading'
>>> min_stars_number = 100
>>> created_at = None
>>> pushed_date = None
"""
if search_term is None:
_search_term = ''
else:
_search_term = search_term
qualifier_dict = {}
if min_stars_number is not None:
qualifier_dict['stars'] = '>={}'.format(min_stars_number)
if created_at is not None:
qualifier_dict['created'] = '>={}'.format(created_at)
if pushed_date is not None:
qualifier_dict['pushed'] = '>={}'.format(pushed_date)
search_result = search_repo(_search_term, qualifier_dict)
return search_result
def search_new_repo_by_category(category: str,
min_stars_number: int = 100,
existing_repo_df: pd.DataFrame = None):
"""
:param category:
:param min_stars_number:
:param existing_repo_df:
:return:
usage:
>>> category = 'Data Processing Techniques and Transformations'
>>> min_stars_number = 100
>>> existing_repo_df = get_repo_list()
"""
print('*** searching for category [{}] ***'.format(category))
combined_df = None
if category == 'Deep Learning And Reinforcement Learning':
combined_df = search_repo_multiple_terms(['deep learning trading',
'deep learning finance',
'reinforcement learning trading',
'reinforcement learning finance'],
category,
min_stars_number=min_stars_number
)
elif category == 'Other Models':
combined_df = search_repo_multiple_terms(['machine learning trading',
'machine learning finance'],
category,
min_stars_number=min_stars_number
)
elif category == 'Data Processing Techniques and Transformations':
combined_df = search_repo_multiple_terms(['data transformation trading',
'data transformation finance',
'data transformation time series',
'data processing trading',
'data processing finance',
'power transform trading',
'power transform finance',
'standardization normalization trading',
'standardization normalization finance',
],
category,
min_stars_number=int(min_stars_number * 0.5)
)
elif category == 'Portfolio Selection and Optimisation':
combined_df = search_repo_multiple_terms(['portfolio optimization machine learning finance',
'portfolio optimization machine learning trading',
'portfolio construction machine learning finance',
'portfolio construction machine learning trading',
'portfolio optimization finance',
'portfolio optimization trading',
'portfolio construction finance',
'portfolio construction trading'
],
category,
min_stars_number=min_stars_number
)
elif category == 'Factor and Risk Analysis':
combined_df = search_repo_multiple_terms(['risk factor finance',
'risk factor trading',
'risk premia factor finance',
'risk premia factor trading',
'style factor finance',
'style factor trading',
'macro factor finance',
'macro factor trading',
],
category,
min_stars_number=int(min_stars_number * 0.05)
)
elif category == 'Unsupervised':
combined_df = search_repo_multiple_terms(['unsupervised finance',
'unsupervised trading'
],
category,
min_stars_number=int(min_stars_number * 0.1)
)
elif category == 'Textual':
combined_df = search_repo_multiple_terms(['NLP finance',
'NLP trading'
],
category,
min_stars_number=min_stars_number
)
elif category == 'Derivatives and Hedging':
combined_df = search_repo_multiple_terms(['derivatives finance',
'derivatives trading',
'quantlib trading',
'quantlib finance',
'hedging finance',
'hedging trading',
'option trading',
'option finance',
'delta hedge trading',
'delta hedge finance'
],
category,
min_stars_number=min_stars_number
)
elif category == 'Fixed Income':
combined_df = search_repo_multiple_terms(['corporate bond finance',
'corporate bond trading',
'muni bond trading',
'muni bond finance',
'investment grade finance',
'investment grade trading',
'high yield trading',
'high yield finance',
'credit rating trading',
'credit rating finance',
'fixed income trading',
'fixed income finance',
'corporate bond',
'muni bond',
'credit rating'
],
category,
min_stars_number=int(min_stars_number * 0.2)
)
elif category == 'Alternative Finance':
# don't include crypto here as it will skew the results, consider putting it as a seperate category
combined_df = search_repo_multiple_terms(['private equity',
'venture capital',
'real estate trading',
'real estate finance',
'alternative asset trading',
'alternative asset finance',
'commodity trading',
'commodity finance',
'farmland finance',
'farmland trading'
],
category,
min_stars_number=int(min_stars_number * 0.5)
)
elif category == 'Extended Research':
combined_df = search_repo_multiple_terms(['fraud detection',
'behavioural finance',
'corporate finance',
'financial economics',
'mathematical finance',
'liquidity finance',
'fx trading',
'company life cycle',
'merger and acquisition',
'farmland trading',
'HFT',
'high frequency trading'
],
category,
min_stars_number=int(min_stars_number * 0.5)
)
elif category == 'Courses':
combined_df = search_repo_multiple_terms(['finance courses',
'machine learning courses',
'quantitative finance courses',
'time series courses',
'data science courses',
'financial engineering courses'
],
category,
min_stars_number=min_stars_number * 2
)
elif category == 'Data':
combined_df = search_repo_multiple_terms(['financial data',
'time series data',
'company fundamental data',
'crypto data',
'earnings data',
'fixed income data',
'fx data',
'etf data',
'finance database',
'sec edgar',
'economic data',
'investment data',
'fund data',
'options data',
'financial index data',
'futures data',
'cryptocurrencies data',
'money market data'
],
category,
min_stars_number=min_stars_number
)
# only find ones that need to be inserted
if combined_df is not None and not combined_df.empty and existing_repo_df is not None:
combined_df = combined_df[
~combined_df['repo_path'].str.lower().isin(existing_repo_df['repo_path'].dropna().str.lower())]
return combined_df
def search_new_repo_and_append(min_stars_number: int = 100, filter_list=None):
"""
:param min_stars_number:
:param filter_list:
"""
repo_df = get_repo_list()
category_list = repo_df['category'].unique().tolist()
if filter_list is not None:
category_list = [x for x in category_list if x in filter_list]
new_repo_list = []
for category in category_list:
combined_df = search_new_repo_by_category(category, min_stars_number, repo_df)
if combined_df is not None:
new_repo_list.append(combined_df)
new_repo_df = pd.concat(new_repo_list).reset_index(drop=True)
# drop duplicate regardless of the category, keep first one for now
new_repo_df = new_repo_df.drop_duplicates(subset='repo_path')
final_df = pd.concat([repo_df, new_repo_df]).reset_index(drop=True)
final_df = final_df.sort_values(by='category')
final_df.to_csv(os.path.join(PROJECT_ROOT_DIR, 'raw_data', 'url_list.csv'), index=False)
def search_new_repo_by_category_per_day(min_stars_number: int = 100):
repo_df = get_repo_list()
category_list = repo_df['category'].unique().tolist()
# based on today's date, pick which category to search to get around api limit
current_date = datetime.datetime.today()
n_category = len(category_list)
days_in_week = 7
if n_category % days_in_week == 0:
n_repo_to_process_per_day = int(n_category / days_in_week)
else:
n_repo_to_process_per_day = int(n_category / days_in_week) + 1
today_selection = current_date.weekday()
repo_to_process = category_list[
today_selection * n_repo_to_process_per_day:(today_selection + 1) * n_repo_to_process_per_day]
search_new_repo_and_append(min_stars_number=min_stars_number, filter_list=repo_to_process)
if __name__ == '__main__':
search_new_repo_by_category_per_day(min_stars_number=100)