-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDay05.hs
217 lines (190 loc) · 6.34 KB
/
Day05.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedRecordDot #-}
{-# LANGUAGE RecordWildCards #-}
module Day05 where
import Control.Monad
import Data.Either
import Data.Foldable
import Text.ParserCombinators.ReadP
import Harness
import ParseHelper
import Data.List qualified as L
-- (parseInput lineParser) OR (parseInputRaw fullInputParser)
main :: IO ()
main = getInputAndSolve (parseInputRaw parseAlmanac) lowestLocation lowestLocationWithSeedRange
-- SOLVE
lowestLocation :: Almanac -> Int
lowestLocation Almanac {..} =
minimum $
map
( \start ->
foldl'
applyMapping
start
[ seedToSoil
, soilToFert
, fertToWater
, waterToLight
, lightToTemp
, tempToHumid
, humidToLoc
]
)
seeds
lowestLocationWithSeedRange :: Almanac -> Int
lowestLocationWithSeedRange Almanac {..} =
let fixedSeeds =
map (toSeedRange . map snd) $
L.groupBy (\(i1, _) (i2, _) -> i1 `div` (2 :: Int) == i2 `div` 2) $
zip [0 ..] seeds
in minimum . map (.start) $
foldl'
( \acc mapping ->
concatMap (applyMappingToRange mapping) acc
)
fixedSeeds
[ seedToSoil
, soilToFert
, fertToWater
, waterToLight
, lightToTemp
, tempToHumid
, humidToLoc
]
where
toSeedRange :: [Int] -> SeedRange
toSeedRange = \case
[start, len] -> SeedRange {..}
_ -> error "unexpected"
-- HELPERS
applyMapping :: Int -> [Mapping] -> Int
applyMapping start maps =
fromLeft start $
foldM
( \() mapping ->
if start >= mapping.sourceStart && start <= mapping.sourceStart + mapping.mappingLength - 1
then
let depthIntoMap = start - mapping.sourceStart
in Left $ mapping.destinationStart + depthIntoMap
else Right ()
)
()
maps
applyMappingToRange :: [Mapping] -> SeedRange -> [SeedRange]
applyMappingToRange mappings initialRange =
uncurry (<>) $ foldl' goMaps ([], [initialRange]) mappings
where
-- apply mapping to untransformed ranges
goMaps :: ([SeedRange], [SeedRange]) -> Mapping -> ([SeedRange], [SeedRange])
goMaps (doneRanges, untouchedRanges) m =
let (newDone, newUntouched) = foldl' (goMap m) ([], []) untouchedRanges
in (newDone <> doneRanges, newUntouched)
-- find & shift overlaps between mapping & range
goMap :: Mapping -> ([SeedRange], [SeedRange]) -> SeedRange -> ([SeedRange], [SeedRange])
goMap m (done, untouched) s =
let (overlapping, noOverlap) =
findOverlaps
(m.sourceStart, m.sourceStart + m.mappingLength - 1)
(s.start, s.start + s.len - 1)
in (map (shift m) overlapping <> done, map retain noOverlap <> untouched)
-- split into overlap ranges & no overlap ranges
findOverlaps :: (Int, Int) -> (Int, Int) -> ([(Int, Int)], [(Int, Int)])
findOverlaps (mStart, mEnd) s@(sStart, sEnd) =
if
| (sStart >= mStart && sEnd <= mEnd) ->
-- whole seed range in map range
([s], [])
| sEnd >= mStart && sEnd <= mEnd ->
-- end of seed range in map range
([(mStart, sEnd)], [(sStart, mStart - 1)])
| sStart >= mStart && sStart <= mEnd ->
-- start of seed range in map range
([(sStart, mEnd)], [(mEnd + 1, sEnd)])
| sStart <= mStart && sEnd >= mEnd ->
-- middle of seed range in map range
([(mStart, mEnd)], [(sStart, mStart - 1), (mEnd + 1, sEnd)])
| otherwise ->
-- no overlap
([], [s])
-- shift to dest range & transform back into SeedRange
shift :: Mapping -> (Int, Int) -> SeedRange
shift Mapping {..} (sStart, sEnd) =
let len = sEnd - sStart + 1
depthIntoMap = sStart - sourceStart
in SeedRange {start = destinationStart + depthIntoMap, len}
-- just transform back into seed range
retain :: (Int, Int) -> SeedRange
retain (sStart, sEnd) =
SeedRange
{ start = sStart
, len = sEnd - sStart + 1
}
data SeedRange = SeedRange
{ start :: Int
, len :: Int
}
deriving (Show)
-- PARSE
data Almanac = Almanac
{ seeds :: [Int]
, seedToSoil :: [Mapping]
, soilToFert :: [Mapping]
, fertToWater :: [Mapping]
, waterToLight :: [Mapping]
, lightToTemp :: [Mapping]
, tempToHumid :: [Mapping]
, humidToLoc :: [Mapping]
}
deriving (Show)
parseAlmanac :: ReadP Almanac
parseAlmanac = do
let parseSpacer = void $ newline *> newline
void $ string "seeds: "
seeds <- sepBy1 parseInt (satisfy (== ' '))
parseSpacer
void $ many1 $ satisfy (/= '\n')
void newline
seedToSoil <- sepBy1 parseMapping newline
parseSpacer
void $ many1 $ satisfy (/= '\n')
void newline
soilToFert <- sepBy1 parseMapping newline
parseSpacer
void $ many1 $ satisfy (/= '\n')
void newline
fertToWater <- sepBy1 parseMapping newline
parseSpacer
void $ many1 $ satisfy (/= '\n')
void newline
waterToLight <- sepBy1 parseMapping newline
parseSpacer
void $ many1 $ satisfy (/= '\n')
void newline
lightToTemp <- sepBy1 parseMapping newline
parseSpacer
void $ many1 $ satisfy (/= '\n')
void newline
tempToHumid <- sepBy1 parseMapping newline
parseSpacer
void $ many1 $ satisfy (/= '\n')
void newline
humidToLoc <- sepBy1 parseMapping newline
void newline
return Almanac {..}
data Mapping = Mapping
{ destinationStart :: Int
, sourceStart :: Int
, mappingLength :: Int
}
deriving (Show)
parseMapping :: ReadP Mapping
parseMapping = do
destinationStart <- parseInt
void $ char ' '
sourceStart <- parseInt
void $ char ' '
mappingLength <- parseInt
return Mapping {..}