-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path007-MaximumSubArray.py
46 lines (33 loc) · 1.23 KB
/
007-MaximumSubArray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Brute Force Approach:
def maxSubArray1(nums):
max_sum = 0
n = len(nums)
for i in range(n):
for j in range(i, n):
curr_sum = sum(nums[i:j+1])
max_sum = max(max_sum, curr_sum) # Time Complexity = O(n^3)
# Space Complexity= O(n)
return max_sum
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(maxSubArray1(nums))
# Better Approach:
def maxSubArray2(nums):
maxSub = nums[0]
curr_sum = 0
for n in nums:
if curr_sum < 0:
curr_sum = 0
curr_sum += n
maxSub = max(curr_sum, maxSub)
return maxSub
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] # Time Complexity = O(n)
print(maxSubArray2(nums)) # Space Complexity= O(1)
# Kadane's Algorithm:
def maxSubArray3(nums):
max_sum, curr_sum = 0, 0
for i in nums:
curr_sum = max(i, curr_sum + i)
max_sum = max(max_sum, curr_sum)
return max_sum
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] # Time Complexity = O(n)
print(maxSubArray3(nums)) # Space Complexity= O(1)