-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
49 lines (45 loc) · 1.67 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from __future__ import division
from collections import Counter
from multibayes.multibayes import MultinomialBayes, MultinomialBayesException
test_set = []
training_set = []
country_to_lang = {"Singapore": "Singlish",
"China": "Singlish",
"India": "Indian English",
"Bangladesh": "Indian English",
"United States": "English",
"United Kingdom": "English"
}
with open("data/parsed_corpus.data", "r") as f:
i = 0
for line in f:
example, country = line.rstrip().split("\t")
example = example.strip()
if example:
lang = country_to_lang[country]
if i%5 == 0:
# use approx 20% of data for test set, other 80% for training
test_set.append((example, lang))
else:
training_set.append((example, lang))
i += 1
misclassifications = Counter()
correct = 0
incorrect = 0
m = MultinomialBayes(training_set)
for example, lang in test_set:
try:
most_likely_class, prob = m.classify(example)[0]
if lang != most_likely_class:
incorrect += 1
misclassifications[(lang, most_likely_class)] += 1
else:
correct += 1
except MultinomialBayesException, e:
pass
print "Training set size: {}, Test set size: {}\n {} correct/{} incorrect of {} examples (accuracy: {:.2f}%)".format(
len(training_set), len(test_set),
correct, incorrect, correct+incorrect, 100.0*(correct/(correct+incorrect))
)
for (true_lang, class_lang), number_wrong in misclassifications.most_common():
print "Misclassified {} as {}: {} times".format(true_lang, class_lang, number_wrong)