forked from lawlite19/MachineLearning_Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
K-Menas.py
123 lines (105 loc) · 5.04 KB
/
K-Menas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#-*- coding: utf-8 -*-
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import colors
from scipy import io as spio
from scipy import misc # 图片操作
from matplotlib.font_manager import FontProperties
font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) # 解决windows环境下画图汉字乱码问题
def KMeans():
'''二维数据聚类过程演示'''
print u'聚类过程展示...\n'
data = spio.loadmat("data.mat")
X = data['X']
K = 3 # 总类数
initial_centroids = np.array([[3,3],[6,2],[8,5]]) # 初始化类中心
max_iters = 10
runKMeans(X,initial_centroids,max_iters,True) # 执行K-Means聚类算法
'''
图片压缩
'''
print u'K-Means压缩图片\n'
img_data = misc.imread("bird.png") # 读取图片像素数据
img_data = img_data/255.0 # 像素值映射到0-1
img_size = img_data.shape
X = img_data.reshape(img_size[0]*img_size[1],3) # 调整为N*3的矩阵,N是所有像素点个数
K = 16
max_iters = 5
initial_centroids = kMeansInitCentroids(X,K)
centroids,idx = runKMeans(X, initial_centroids, max_iters, False)
print u'\nK-Means运行结束\n'
print u'\n压缩图片...\n'
idx = findClosestCentroids(X, centroids)
X_recovered = centroids[idx,:]
X_recovered = X_recovered.reshape(img_size[0],img_size[1],3)
print u'绘制图片...\n'
plt.subplot(1,2,1)
plt.imshow(img_data)
plt.title(u"原先图片",fontproperties=font)
plt.subplot(1,2,2)
plt.imshow(X_recovered)
plt.title(u"压缩图像",fontproperties=font)
plt.show()
print u'运行结束!'
# 找到每条数据距离哪个类中心最近
def findClosestCentroids(X,initial_centroids):
m = X.shape[0] # 数据条数
K = initial_centroids.shape[0] # 类的总数
dis = np.zeros((m,K)) # 存储计算每个点分别到K个类的距离
idx = np.zeros((m,1)) # 要返回的每条数据属于哪个类
'''计算每个点到每个类中心的距离'''
for i in range(m):
for j in range(K):
dis[i,j] = np.dot((X[i,:]-initial_centroids[j,:]).reshape(1,-1),(X[i,:]-initial_centroids[j,:]).reshape(-1,1))
'''返回dis每一行的最小值对应的列号,即为对应的类别
- np.min(dis, axis=1)返回每一行的最小值
- np.where(dis == np.min(dis, axis=1).reshape(-1,1)) 返回对应最小值的坐标
- 注意:可能最小值对应的坐标有多个,where都会找出来,所以返回时返回前m个需要的即可(因为对于多个最小值,属于哪个类别都可以)
'''
dummy,idx = np.where(dis == np.min(dis, axis=1).reshape(-1,1))
return idx[0:dis.shape[0]] # 注意截取一下
# 计算类中心
def computerCentroids(X,idx,K):
n = X.shape[1]
centroids = np.zeros((K,n))
for i in range(K):
centroids[i,:] = np.mean(X[np.ravel(idx==i),:], axis=0).reshape(1,-1) # 索引要是一维的,axis=0为每一列,idx==i一次找出属于哪一类的,然后计算均值
return centroids
# 聚类算法
def runKMeans(X,initial_centroids,max_iters,plot_process):
m,n = X.shape # 数据条数和维度
K = initial_centroids.shape[0] # 类数
centroids = initial_centroids # 记录当前类中心
previous_centroids = centroids # 记录上一次类中心
idx = np.zeros((m,1)) # 每条数据属于哪个类
for i in range(max_iters): # 迭代次数
print u'迭代计算次数:%d'%(i+1)
idx = findClosestCentroids(X, centroids)
if plot_process: # 如果绘制图像
plt = plotProcessKMeans(X,centroids,previous_centroids) # 画聚类中心的移动过程
previous_centroids = centroids # 重置
centroids = computerCentroids(X, idx, K) # 重新计算类中心
if plot_process: # 显示最终的绘制结果
plt.show()
return centroids,idx # 返回聚类中心和数据属于哪个类
# 画图,聚类中心的移动过程
def plotProcessKMeans(X,centroids,previous_centroids):
plt.scatter(X[:,0], X[:,1]) # 原数据的散点图
plt.plot(previous_centroids[:,0],previous_centroids[:,1],'rx',markersize=10,linewidth=5.0) # 上一次聚类中心
plt.plot(centroids[:,0],centroids[:,1],'rx',markersize=10,linewidth=5.0) # 当前聚类中心
for j in range(centroids.shape[0]): # 遍历每个类,画类中心的移动直线
p1 = centroids[j,:]
p2 = previous_centroids[j,:]
plt.plot([p1[0],p2[0]],[p1[1],p2[1]],"->",linewidth=2.0)
return plt
# 初始化类中心--随机取K个点作为聚类中心
def kMeansInitCentroids(X,K):
m = X.shape[0]
m_arr = np.arange(0,m) # 生成0-m-1
centroids = np.zeros((K,X.shape[1]))
np.random.shuffle(m_arr) # 打乱m_arr顺序
rand_indices = m_arr[:K] # 取前K个
centroids = X[rand_indices,:]
return centroids
if __name__ == "__main__":
KMeans()