-
Notifications
You must be signed in to change notification settings - Fork 173
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Deprecate functions ? #1045
Comments
>>> import pandas as pd
>>> import janitor
>>> df = pd.DataFrame({
... "student_id": ["S1", "S2", "S3"],
... "score": [40, 60, 85],
... })
>>> df
student_id score
0 S1 40
1 S2 60
2 S3 85
>>> df.filter_on("score < 50", complement=False)
student_id score
0 S1 40
>>> df.query("score < 50")
student_id score
0 S1 40 |
|
Good points, y'all. I'm in favour of dropping
Also in favour of the two that you mentioned, @samukweku. They are internal duplications of functionality. We should put in a long, long deprecation warning like we did when |
A decorator may simplify that. from functools import wraps
from warnings import warn
def warning(
message: str,
category: Exception = None,
stacklevel: int = 1,
**kwargs
):
"""
A warning decorator.
Parameters
----------
message : str
The warning information to user.
category : Exception, optional
If given, must be a **warning category class**. it defaults to
:exc:`UserWarning`.
stacklevel : int, default 1
Default to find the first place in the stack.
**kwargs
See the documentation for :meth:`warnings.warn` for complete details on
the keyword arguments.
See Also
--------
warnings.warn
Examples
--------
>>> from dtoolkit.util._decorator import warning
>>> @warning("This's a warning message.")
... def func(*args, **kwargs):
... ...
>>> func()
"""
def decorator(func):
@wraps(func)
def wrapper(*f_args, **f_kwargs):
warn(message, category=category, stacklevel=stacklevel, **kwargs)
return func(*f_args, **f_kwargs)
return wrapper
return decorator |
utils has a |
@pyjanitor-devs/core-devs in the spirit of deprecations, I suggest we deprecate |
I'm in favour! |
Central point to discuss functions to deprecate, if any?
process_text
-transform_columns
covers this very wellimpute
vsfill_empty
-impute
has the advantage of extra statistics functions (mean, mode, ...)rename_columns
- use pandasrename
rename_column
- usepd.rename
remove_columns
- usepd.drop
orselect
filter_on
- usequery
orselect
fill_direction
- usetransform_columns
orpd.DataFrame.assign
groupby_agg
- usetransform_columns
- onceby
is implementedthen
- usepd.DataFrame.pipe
to_datetime
- usejn.transform_columns
pivot_wider
- usepd.DataFrame.pivot
The text was updated successfully, but these errors were encountered: