|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD 3-Clause license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | +# this benchmarking script is a modified version of the original script from: https://github.com/drisspg/transformer_nuggets/blob/main/transformer_nuggets/utils/benchmark.py |
| 7 | +import argparse |
| 8 | +import itertools |
| 9 | +from dataclasses import dataclass |
| 10 | +from typing import List |
| 11 | + |
| 12 | +import torch |
| 13 | +from tabulate import tabulate |
| 14 | +from tqdm import tqdm |
| 15 | +from utils import benchmark_cuda_function_in_microseconds |
| 16 | + |
| 17 | +from torchao.float8.config import ScalingGranularity |
| 18 | +from torchao.float8.float8_utils import tensor_to_scale, to_fp8_saturated |
| 19 | +from torchao.prototype.moe_training.utils import generate_jagged_offs |
| 20 | +from torchao.prototype.mx_formats.mx_tensor import to_mx |
| 21 | +from torchao.prototype.mx_formats.utils import ( |
| 22 | + to_blocked_per_group_2d, |
| 23 | + to_blocked_per_group_3d, |
| 24 | +) |
| 25 | + |
| 26 | +device = torch.device("cuda") |
| 27 | + |
| 28 | + |
| 29 | +@dataclass(frozen=True) |
| 30 | +class ExperimentConfig: |
| 31 | + e: int |
| 32 | + m: int |
| 33 | + n: int |
| 34 | + k: int |
| 35 | + |
| 36 | + |
| 37 | +@dataclass(frozen=True) |
| 38 | +class ExperimentResult: |
| 39 | + bf16_us: float |
| 40 | + fp8_rowwise_us: float |
| 41 | + mxfp8_us: float |
| 42 | + |
| 43 | + |
| 44 | +@dataclass(frozen=True) |
| 45 | +class Experiment: |
| 46 | + config: ExperimentConfig |
| 47 | + result: ExperimentResult |
| 48 | + |
| 49 | + |
| 50 | +def get_configs() -> List[ExperimentConfig]: |
| 51 | + # Llama4 shapes |
| 52 | + M = [16640] |
| 53 | + K = [5120] |
| 54 | + N = [8192] |
| 55 | + E = [16] |
| 56 | + configs = [] |
| 57 | + for e, m, n, k in itertools.product( |
| 58 | + E, |
| 59 | + M, |
| 60 | + N, |
| 61 | + K, |
| 62 | + ): |
| 63 | + configs.append( |
| 64 | + ExperimentConfig( |
| 65 | + e=e, |
| 66 | + m=m, |
| 67 | + n=n, |
| 68 | + k=k, |
| 69 | + ) |
| 70 | + ) |
| 71 | + return configs |
| 72 | + |
| 73 | + |
| 74 | +def run_experiment( |
| 75 | + config: ExperimentConfig, args: argparse.Namespace |
| 76 | +) -> ExperimentResult: |
| 77 | + e, m, n, k = config.e, config.m, config.n, config.k |
| 78 | + |
| 79 | + # define test inputs |
| 80 | + A = torch.randn( |
| 81 | + (m, k), |
| 82 | + dtype=torch.bfloat16, |
| 83 | + device=device, |
| 84 | + ) |
| 85 | + B_t = torch.randn( |
| 86 | + (e, n, k), |
| 87 | + dtype=torch.bfloat16, |
| 88 | + device=device, |
| 89 | + requires_grad=True, |
| 90 | + ).transpose(-2, -1) |
| 91 | + |
| 92 | + # Configure groups |
| 93 | + n_groups = e |
| 94 | + Mg = A.shape[0] |
| 95 | + alignment_size = 16 |
| 96 | + offs = generate_jagged_offs(n_groups, Mg, multiple_of=alignment_size) |
| 97 | + |
| 98 | + # benchmark bf16 grouped mm |
| 99 | + bf16_us = benchmark_cuda_function_in_microseconds( |
| 100 | + torch._grouped_mm, |
| 101 | + A, |
| 102 | + B_t, |
| 103 | + offs, |
| 104 | + out_dtype=torch.bfloat16, |
| 105 | + ) |
| 106 | + |
| 107 | + # bench fp8 rowwise grouped mm |
| 108 | + fp8_rowwise_us = bench_fp8_rowwise_grouped_mm(A, B_t, offs) |
| 109 | + |
| 110 | + # benchmark mxfp8 grouped mm |
| 111 | + mxfp8_us = bench_mxfp8_grouped_mm(A, B_t, offs) |
| 112 | + |
| 113 | + return ExperimentResult( |
| 114 | + bf16_us=round(bf16_us, 3), |
| 115 | + fp8_rowwise_us=round(fp8_rowwise_us, 3), |
| 116 | + mxfp8_us=round(mxfp8_us, 3), |
| 117 | + ) |
| 118 | + |
| 119 | + |
| 120 | +def print_results(experiments: List[Experiment]): |
| 121 | + headers = [ |
| 122 | + "E", |
| 123 | + "M", |
| 124 | + "N", |
| 125 | + "K", |
| 126 | + "bf16_time_us", |
| 127 | + "fp8_rowwise_time_us", |
| 128 | + "mxfp8_time_us", |
| 129 | + ] |
| 130 | + rows = [] |
| 131 | + for experiment in experiments: |
| 132 | + rows.append( |
| 133 | + [ |
| 134 | + experiment.config.e, |
| 135 | + experiment.config.m, |
| 136 | + experiment.config.n, |
| 137 | + experiment.config.k, |
| 138 | + experiment.result.bf16_us, |
| 139 | + experiment.result.fp8_rowwise_us, |
| 140 | + experiment.result.mxfp8_us, |
| 141 | + ] |
| 142 | + ) |
| 143 | + print(tabulate(rows, headers=headers)) |
| 144 | + |
| 145 | + |
| 146 | +# benchmark fp8 grouped mm |
| 147 | +def bench_fp8_rowwise_grouped_mm(A, B_t, offs) -> float: |
| 148 | + # Convert A to float8, row-major for left operand of grouped GEMM. |
| 149 | + A_scales = tensor_to_scale( |
| 150 | + A, |
| 151 | + torch.float8_e4m3fn, |
| 152 | + scaling_granularity=ScalingGranularity.AXISWISE, |
| 153 | + axiswise_dim=-1, |
| 154 | + round_scales_to_power_of_2=True, |
| 155 | + ) |
| 156 | + A_scaled = A.to(torch.float32) * A_scales |
| 157 | + A_fp8_row_major = to_fp8_saturated(A_scaled, torch.float8_e4m3fn) |
| 158 | + |
| 159 | + # Convert B_t to float8, column-major for right operand of grouped GEMM. |
| 160 | + B_t_scales = tensor_to_scale( |
| 161 | + B_t, |
| 162 | + torch.float8_e4m3fn, |
| 163 | + scaling_granularity=ScalingGranularity.AXISWISE, |
| 164 | + axiswise_dim=-2, |
| 165 | + round_scales_to_power_of_2=True, |
| 166 | + ) |
| 167 | + B_t_scaled = B_t.to(torch.float32) * B_t_scales |
| 168 | + B_t_fp8_col_major = to_fp8_saturated(B_t_scaled, torch.float8_e4m3fn) |
| 169 | + |
| 170 | + # Bench the gemm |
| 171 | + fp8_us = benchmark_cuda_function_in_microseconds( |
| 172 | + torch._scaled_grouped_mm, |
| 173 | + A_fp8_row_major, |
| 174 | + B_t_fp8_col_major, |
| 175 | + A_scales.squeeze(1).reciprocal(), |
| 176 | + B_t_scales.squeeze(1).reciprocal(), |
| 177 | + offs, |
| 178 | + out_dtype=torch.bfloat16, |
| 179 | + use_fast_accum=True, |
| 180 | + ) |
| 181 | + return fp8_us |
| 182 | + |
| 183 | + |
| 184 | +def bench_mxfp8_grouped_mm(A, B_t, offs, block_size=32) -> float: |
| 185 | + # A_mx shape: (M, K) |
| 186 | + # A_scale shape: (M, K//block_size) |
| 187 | + A_scales, A_fp8 = to_mx(A, elem_dtype=torch.float8_e4m3fn, block_size=block_size) |
| 188 | + |
| 189 | + # B_mx shape: (E, N, K) |
| 190 | + # B_scale shape: (E, N, K//block_size) |
| 191 | + B_scales, B_fp8 = to_mx( |
| 192 | + B_t.transpose(-2, -1), |
| 193 | + elem_dtype=torch.float8_e4m3fn, |
| 194 | + block_size=block_size, |
| 195 | + ) |
| 196 | + |
| 197 | + # Convert scales for each group to blocked format. |
| 198 | + Mg, K = A_fp8.shape |
| 199 | + A_scales_blocked, starting_row_after_padding = to_blocked_per_group_2d( |
| 200 | + A_scales, offs, Mg, K |
| 201 | + ) |
| 202 | + B_scales_blocked = to_blocked_per_group_3d(B_scales) |
| 203 | + |
| 204 | + # From this, we compute `group_sizes` and `starting_row_after_padding`: |
| 205 | + # group_sizes = [32, 32, 64] |
| 206 | + # starting_row_after_padding = [0, 32, 64, 128] |
| 207 | + zero = torch.tensor([0], dtype=offs.dtype, device=offs.device) |
| 208 | + group_sizes = torch.diff(offs, prepend=zero).to(torch.int64) |
| 209 | + |
| 210 | + # Run the grouped mm |
| 211 | + mxfp8_us = benchmark_cuda_function_in_microseconds( |
| 212 | + torch.ops.fbgemm.mx8mx8bf16_grouped_stacked, |
| 213 | + A_fp8, |
| 214 | + B_fp8, |
| 215 | + A_scales_blocked, |
| 216 | + B_scales_blocked, |
| 217 | + group_sizes, |
| 218 | + starting_row_after_padding=starting_row_after_padding, |
| 219 | + ) |
| 220 | + return mxfp8_us |
| 221 | + |
| 222 | + |
| 223 | +def main(args: argparse.Namespace): |
| 224 | + torch.random.manual_seed(123) |
| 225 | + configs = get_configs() |
| 226 | + results = [] |
| 227 | + for config in tqdm(configs): |
| 228 | + result = run_experiment(config, args) |
| 229 | + results.append(Experiment(config=config, result=result)) |
| 230 | + |
| 231 | + # Use Tabulate to print results |
| 232 | + print_results(results) |
| 233 | + |
| 234 | + |
| 235 | +if __name__ == "__main__": |
| 236 | + arg_parser = argparse.ArgumentParser() |
| 237 | + args = arg_parser.parse_args() |
| 238 | + main(args) |
0 commit comments