|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# |
| 3 | +# This source code is licensed under the MIT license found in the |
| 4 | +# LICENSE file in the root directory of this source tree. |
| 5 | +"""TD3 Example. |
| 6 | +
|
| 7 | +This is a simple self-contained example of a TD3 training script. |
| 8 | +
|
| 9 | +It supports state environments like MuJoCo. |
| 10 | +
|
| 11 | +The helper functions are coded in the utils.py associated with this script. |
| 12 | +""" |
| 13 | +import time |
| 14 | + |
| 15 | +import hydra |
| 16 | +import numpy as np |
| 17 | +import torch |
| 18 | +import torch.cuda |
| 19 | +import tqdm |
| 20 | +from torchrl._utils import logger as torchrl_logger |
| 21 | +from torchrl.data.utils import CloudpickleWrapper |
| 22 | + |
| 23 | +from torchrl.envs.utils import ExplorationType, set_exploration_type |
| 24 | + |
| 25 | +from torchrl.record.loggers import generate_exp_name, get_logger |
| 26 | +from utils import ( |
| 27 | + log_metrics, |
| 28 | + make_async_collector, |
| 29 | + make_environment, |
| 30 | + make_loss_module, |
| 31 | + make_optimizer, |
| 32 | + make_replay_buffer, |
| 33 | + make_simple_environment, |
| 34 | + make_td3_agent, |
| 35 | +) |
| 36 | + |
| 37 | + |
| 38 | +@hydra.main(version_base="1.1", config_path="", config_name="config-fast") |
| 39 | +def main(cfg: "DictConfig"): # noqa: F821 |
| 40 | + device = cfg.network.device |
| 41 | + if device in ("", None): |
| 42 | + if torch.cuda.is_available(): |
| 43 | + device = torch.device("cuda:0") |
| 44 | + else: |
| 45 | + device = torch.device("cpu") |
| 46 | + device = torch.device(device) |
| 47 | + |
| 48 | + # Create logger |
| 49 | + exp_name = generate_exp_name("TD3", cfg.logger.exp_name) |
| 50 | + logger = None |
| 51 | + if cfg.logger.backend: |
| 52 | + logger = get_logger( |
| 53 | + logger_type=cfg.logger.backend, |
| 54 | + logger_name="td3_logging", |
| 55 | + experiment_name=exp_name, |
| 56 | + wandb_kwargs={ |
| 57 | + "mode": cfg.logger.mode, |
| 58 | + "config": dict(cfg), |
| 59 | + "project": cfg.logger.project_name, |
| 60 | + "group": cfg.logger.group_name, |
| 61 | + }, |
| 62 | + ) |
| 63 | + |
| 64 | + # Set seeds |
| 65 | + torch.manual_seed(cfg.env.seed) |
| 66 | + np.random.seed(cfg.env.seed) |
| 67 | + |
| 68 | + # Create environments |
| 69 | + train_env, eval_env = make_environment(cfg, logger=logger) |
| 70 | + |
| 71 | + # Create agent |
| 72 | + model, exploration_policy = make_td3_agent(cfg, train_env, eval_env, device) |
| 73 | + |
| 74 | + # Create TD3 loss |
| 75 | + loss_module, target_net_updater = make_loss_module(cfg, model) |
| 76 | + |
| 77 | + # Create replay buffer |
| 78 | + replay_buffer = make_replay_buffer( |
| 79 | + batch_size=cfg.optim.batch_size, |
| 80 | + prb=cfg.replay_buffer.prb, |
| 81 | + buffer_size=cfg.replay_buffer.size, |
| 82 | + scratch_dir=cfg.replay_buffer.scratch_dir, |
| 83 | + device=cfg.replay_buffer.device if cfg.replay_buffer.device else device, |
| 84 | + prefetch=0, |
| 85 | + mmap=False, |
| 86 | + ) |
| 87 | + reshape = CloudpickleWrapper(lambda td: td.reshape(-1)) |
| 88 | + replay_buffer.append_transform(reshape, invert=True) |
| 89 | + |
| 90 | + # Create off-policy collector |
| 91 | + envname = cfg.env.name |
| 92 | + task = cfg.env.task |
| 93 | + library = cfg.env.library |
| 94 | + seed = cfg.env.seed |
| 95 | + max_episode_steps = cfg.env.max_episode_steps |
| 96 | + collector = make_async_collector( |
| 97 | + cfg, |
| 98 | + lambda: make_simple_environment( |
| 99 | + envname, task, library, seed, max_episode_steps |
| 100 | + ), |
| 101 | + exploration_policy, |
| 102 | + replay_buffer, |
| 103 | + ) |
| 104 | + |
| 105 | + # Create optimizers |
| 106 | + optimizer_actor, optimizer_critic = make_optimizer(cfg, loss_module) |
| 107 | + |
| 108 | + # Main loop |
| 109 | + start_time = time.time() |
| 110 | + collected_frames = 0 |
| 111 | + pbar = tqdm.tqdm(total=cfg.collector.total_frames) |
| 112 | + |
| 113 | + init_random_frames = cfg.collector.init_random_frames |
| 114 | + num_updates = int( |
| 115 | + max(1, cfg.collector.env_per_collector) |
| 116 | + * cfg.collector.frames_per_batch |
| 117 | + * cfg.optim.utd_ratio |
| 118 | + ) |
| 119 | + delayed_updates = cfg.optim.policy_update_delay |
| 120 | + prb = cfg.replay_buffer.prb |
| 121 | + update_counter = 0 |
| 122 | + |
| 123 | + sampling_start = time.time() |
| 124 | + current_frames = cfg.collector.frames_per_batch |
| 125 | + update_actor = False |
| 126 | + |
| 127 | + test_env = make_simple_environment(envname, task, library, seed, max_episode_steps) |
| 128 | + with set_exploration_type(ExplorationType.DETERMINISTIC), torch.no_grad(): |
| 129 | + reward = test_env.rollout(10_000, exploration_policy)["next", "reward"].mean() |
| 130 | + print(f"reward before training: {reward: 4.4f}") |
| 131 | + |
| 132 | + for _ in collector: |
| 133 | + sampling_time = time.time() - sampling_start |
| 134 | + exploration_policy[1].step(current_frames) |
| 135 | + |
| 136 | + # Update weights of the inference policy |
| 137 | + collector.update_policy_weights_() |
| 138 | + |
| 139 | + pbar.update(current_frames) |
| 140 | + |
| 141 | + # Add to replay buffer |
| 142 | + collected_frames += current_frames |
| 143 | + |
| 144 | + # Optimization steps |
| 145 | + training_start = time.time() |
| 146 | + loss_module.value_loss = torch.compile( |
| 147 | + loss_module.value_loss, mode="reduce-overhead" |
| 148 | + ) |
| 149 | + loss_module.actor_loss = torch.compile( |
| 150 | + loss_module.actor_loss, mode="reduce-overhead" |
| 151 | + ) |
| 152 | + |
| 153 | + if collected_frames >= init_random_frames: |
| 154 | + ( |
| 155 | + actor_losses, |
| 156 | + q_losses, |
| 157 | + ) = ([], []) |
| 158 | + for _ in range(num_updates): |
| 159 | + |
| 160 | + # Update actor every delayed_updates |
| 161 | + update_counter += 1 |
| 162 | + update_actor = update_counter % delayed_updates == 0 |
| 163 | + |
| 164 | + # Sample from replay buffer |
| 165 | + sampled_tensordict = replay_buffer.sample() |
| 166 | + if sampled_tensordict.device != device: |
| 167 | + sampled_tensordict = sampled_tensordict.to( |
| 168 | + device, non_blocking=True |
| 169 | + ) |
| 170 | + else: |
| 171 | + sampled_tensordict = sampled_tensordict.clone() |
| 172 | + |
| 173 | + # Compute loss |
| 174 | + q_loss, *_ = loss_module.value_loss(sampled_tensordict) |
| 175 | + |
| 176 | + # Update critic |
| 177 | + optimizer_critic.zero_grad() |
| 178 | + q_loss.backward() |
| 179 | + optimizer_critic.step() |
| 180 | + q_losses.append(q_loss.item()) |
| 181 | + |
| 182 | + # Update actor |
| 183 | + if update_actor: |
| 184 | + actor_loss, *_ = loss_module.actor_loss(sampled_tensordict) |
| 185 | + optimizer_actor.zero_grad() |
| 186 | + actor_loss.backward() |
| 187 | + optimizer_actor.step() |
| 188 | + |
| 189 | + actor_losses.append(actor_loss.item()) |
| 190 | + |
| 191 | + # Update target params |
| 192 | + target_net_updater.step() |
| 193 | + |
| 194 | + # Update priority |
| 195 | + if prb: |
| 196 | + replay_buffer.update_priority(sampled_tensordict) |
| 197 | + |
| 198 | + training_time = time.time() - training_start |
| 199 | + |
| 200 | + # Logging |
| 201 | + metrics_to_log = {} |
| 202 | + if collected_frames >= init_random_frames: |
| 203 | + metrics_to_log["train/q_loss"] = np.mean(q_losses) |
| 204 | + if update_actor: |
| 205 | + metrics_to_log["train/a_loss"] = np.mean(actor_losses) |
| 206 | + metrics_to_log["train/sampling_time"] = sampling_time |
| 207 | + metrics_to_log["train/training_time"] = training_time |
| 208 | + |
| 209 | + if logger is not None: |
| 210 | + log_metrics(logger, metrics_to_log, collected_frames) |
| 211 | + sampling_start = time.time() |
| 212 | + |
| 213 | + collector.shutdown() |
| 214 | + if not eval_env.is_closed: |
| 215 | + eval_env.close() |
| 216 | + if not train_env.is_closed: |
| 217 | + train_env.close() |
| 218 | + |
| 219 | + with set_exploration_type(ExplorationType.DETERMINISTIC), torch.no_grad(): |
| 220 | + reward = test_env.rollout(10_000, exploration_policy)["next", "reward"].mean() |
| 221 | + print(f"reward before training: {reward: 4.4f}") |
| 222 | + test_env.close() |
| 223 | + |
| 224 | + end_time = time.time() |
| 225 | + execution_time = end_time - start_time |
| 226 | + torchrl_logger.info(f"Training took {execution_time:.2f} seconds to finish") |
| 227 | + |
| 228 | + |
| 229 | +if __name__ == "__main__": |
| 230 | + main() |
0 commit comments