You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
ix_to_lb = {i : label for i, label in enumerate(labels)}
lines = []
for idx in idxes:
line, = plt.plot(framewise_output[:, idx], label=ix_to_lb[idx])
lines.append(line)
`def plot_sound_event_detection_result(framewise_output):
#Visualization of sound event detection result.
#Args:framewise_output: (time_steps, classes_num)
out_fig_path = 'results/sed_result.png'
os.makedirs(os.path.dirname(out_fig_path), exist_ok=True)
classwise_output = np.max(framewise_output, axis=0) # (classes_num,)
idxes = np.argsort(classwise_output)[::-1]
idxes = idxes[0:5]
ix_to_lb = {i : label for i, label in enumerate(labels)}
lines = []
for idx in idxes:
line, = plt.plot(framewise_output[:, idx], label=ix_to_lb[idx])
lines.append(line)
plt.legend(handles=lines)
plt.xlabel('Frames')
plt.ylabel('Probability')
plt.ylim(0, 1.)
plt.savefig(out_fig_path)
print('Save fig to {}'.format(out_fig_path))
`
convert this into pandas format (timestamp,class_Name) on which particular time which kind of classes are predicting?
The text was updated successfully, but these errors were encountered: