-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiment.py
63 lines (56 loc) · 1.67 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import sys
import copy
import time
import json
import torch
import numpy as np
import pandas as pd
import agents
from utils.helper import set_one_thread, set_random_seed, rss_memory_usage
class Experiment(object):
'''
Train the agent to play the game.
'''
def __init__(self, cfg):
self.cfg = copy.deepcopy(cfg)
if torch.cuda.is_available() and 'cuda' in cfg['device']:
self.device = cfg['device']
else:
self.cfg['device'] = 'cpu'
self.device = 'cpu'
self.config_idx = cfg['config_idx']
self.env_name = cfg['env']['name']
self.agent_name = cfg['agent']['name']
if self.cfg['generate_random_seed']:
self.cfg['seed'] = np.random.randint(int(1e6))
self.model_path = self.cfg['model_path']
self.cfg_path = self.cfg['cfg_path']
self.save_config()
def run(self):
'''
Run the game for multiple times
'''
set_one_thread()
self.start_time = time.time()
set_random_seed(self.cfg['seed'])
self.agent = getattr(agents, self.agent_name)(self.cfg)
# Train && Test
self.agent.run_steps()
# Save results
self.agent.save_result('Train')
self.agent.save_result('Test')
# Save model
# self.save_model()
self.end_time = time.time()
self.agent.logger.info(f'Memory usage: {rss_memory_usage():.2f} MB')
self.agent.logger.info(f'Time elapsed: {(self.end_time-self.start_time)/60:.2f} minutes')
def save_model(self):
self.agent.save_model(self.model_path)
def load_model(self):
self.agent.load_model(self.model_path)
def save_config(self):
cfg_json = json.dumps(self.cfg, indent=2)
f = open(self.cfg_path, 'w')
f.write(cfg_json)
f.close()