-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpreprocessing.py
80 lines (68 loc) · 2.96 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from src.datasets.catalog import DATASET_DICT
"""
Compute a dataset's training set per-channel mean and standard deviation for standardization purposes.
Also calculate the label distribution for the dataset's training and validation/test splits.
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot', type=str, default="/home/ubuntu/2022-spr-benchmarking/src/datasets/")
parser.add_argument('--dataset', type=str, default="vindr")
args = parser.parse_args()
train_ds_kwargs = {"base_root": args.dataroot, "download": True, "train": True}
val_ds_kwargs = {"base_root": args.dataroot, "download": True, "train": False}
dataset = DATASET_DICT[args.dataset]
train_dataset = dataset(**train_ds_kwargs)
val_dataset = dataset(**val_ds_kwargs)
train_loader = DataLoader(
train_dataset,
batch_size=1,
num_workers=8,
shuffle=False,
drop_last=False,
pin_memory=True,
)
val_loader = DataLoader(
val_dataset,
batch_size=1,
num_workers=8,
shuffle=False,
drop_last=False,
pin_memory=True,
)
psum = torch.tensor([0.0, 0.0, 0.0])
psum_sq = torch.tensor([0.0, 0.0, 0.0])
train_labels = []
val_labels = []
count = 0
for ind, images, label in tqdm(train_loader):
psum += images.sum(axis=[0, 2, 3])
psum_sq += (images**2).sum(axis=[0, 2, 3])
count += images.shape[0] * images.shape[2] * images.shape[3]
train_labels.append(label.item())
for ind, images, label in tqdm(val_loader):
val_labels.append(label.item())
# mean and std
total_mean = psum / count
total_var = (psum_sq / count) - (total_mean**2)
total_std = torch.sqrt(total_var)
# output
print(f'train mean: {total_mean}')
print(f'train std: {total_std}')
train_label_freq = torch.histogram(torch.tensor(train_labels, dtype=torch.float32), bins=train_dataset.NUM_CLASSES).hist
train_label_dist = torch.histogram(
torch.tensor(train_labels, dtype=torch.float32), bins=train_dataset.NUM_CLASSES, density=True
).hist
train_label_dist = train_label_dist / train_label_dist.sum()
val_label_freq = torch.histogram(torch.tensor(val_labels, dtype=torch.float32), bins=train_dataset.NUM_CLASSES).hist
val_label_dist = torch.histogram(
torch.tensor(val_labels, dtype=torch.float32), bins=train_dataset.NUM_CLASSES, density=True
).hist
val_label_dist = val_label_dist / val_label_dist.sum()
print(f'train label frequencies ({train_dataset.NUM_CLASSES} classes): {train_label_freq}')
print(f'train label distribution ({train_dataset.NUM_CLASSES} classes): {train_label_dist}')
print(f'val label frequencies ({train_dataset.NUM_CLASSES} classes): {val_label_freq}')
print(f'val label distribution ({train_dataset.NUM_CLASSES} classes): {val_label_dist}')