-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
96 lines (84 loc) · 2.25 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torch.nn as nn
import torch.nn.functional as F
from .blocks import *
__all__ = [
"XceptionNet",
]
class XceptionNet(nn.Module):
def __init__(
self,
image_channels: int,
num_classes: int,
):
super().__init__()
# Entry Flow
self.conv1 = ConvBlock(image_channels, 32, 3, 2)
self.conv2 = ConvBlock(32, 64, 3)
# Entry Flow Xception Blocks
self.xception_block1 = XceptionBlock(
inp=64,
outp=128,
reps=2,
s=2,
start_act=False,
grow_first=True,
)
self.xception_block2 = XceptionBlock(
inp=128,
outp=256,
reps=2,
s=2,
start_act=True,
grow_first=True,
)
self.xception_block3 = XceptionBlock(
inp=256,
outp=728,
reps=2,
s=2,
start_act=True,
grow_first=True,
)
self.middle_flow_xception_blocks = nn.Sequential(
*[
XceptionBlock(
inp=728,
outp=728,
reps=3,
s=1,
start_act=True,
grow_first=True,
)
for _ in range(8)
]
)
self.xception_block4 = XceptionBlock(
inp=728,
outp=1024,
reps=2,
s=2,
start_act=True,
grow_first=False,
)
self.conv3 = SeparableConv(1024, 1536)
self.conv4 = SeparableConv(1536, 2048)
self.pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = Classifier(2048, num_classes)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Entry flow
x = self.conv1(x)
x = self.conv2(x)
x = self.xception_block1(x)
x = self.xception_block2(x)
x = self.xception_block3(x)
# Middle flow
x = self.middle_flow_xception_blocks(x)
# Exit flow
x = self.xception_block4(x)
x = self.conv3(x)
x = self.conv4(x)
# Classification Flow
x = self.pooling(x)
x = self.classifier(x)
return x