-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathvapid3.py
979 lines (834 loc) · 46.2 KB
/
vapid3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
# VAPiD is an extremely lightweight virus genome annotator that takes any number of viral genomes and annotates them
# producing files suitable for NCBI submission
# Vapid Version
VERSION = 'v1.6.7'
import subprocess
import re
import argparse
import timeit
import os
from Bio.Seq import Seq
from Bio.Blast import NCBIWWW
import platform
import sys
from Bio import Entrez
from Bio import SeqIO
import time
import shutil
import re
Entrez.email = '[email protected]'
# Reads in a fasta file that should have strain names for the names of the sequences - can handle any number of
# sequences. Also strips leading and trailing Ns or ?s from the provided sequence. Also takes an optional boolean
# value to determine if names should be allowed to have system protected characters like / in them. Returns three lists with the names of
# the strains in the first one and the genomes as strings in the second list, the third list is only used when the slashes argument is true
# also changes U's to T's
def read_fasta(fasta_file_loc, slashes=False):
strain_list = []
genome_list = []
full_name_list = []
dna_string = ''
for line in open(fasta_file_loc):
if line[0] == '>':
if slashes:
full_name_list.append(line[1:])
else:
full_name_list.append('')
strain_list.append(line[1:].split()[0])
if dna_string != '':
# strip leading and trailing Ns or ?s because there's no reason to submit them
xip = 0
while dna_string[xip] == 'N' or dna_string[xip] == '?':
xip += 1
y = len(dna_string)
while dna_string[y-1] == 'N' or dna_string[y-1] == '?':
y -= 1
dna_string = dna_string[xip:y]
genome_list.append(dna_string)
dna_string = ''
else:
dna_string += line.strip()
# Just to make sure all our sequences are on the same page
genome_list.append(dna_string)
return strain_list, genome_list, full_name_list
# Spell checking functionality provided by Entrez
# takes an input string and returns the Entrez corrected string as long as it exists
def spell_check(query_string):
# new entrez rules limit requests to no more than 3 a second, this will ensure we don't send more than two
time.sleep(0.5)
handle = Entrez.espell(term=query_string)
record = Entrez.read(handle)
corrected_query = record["CorrectedQuery"]
# Entrez returns blank strings for numerals or things that are spelled correctly
# Since this is based on NCBI's spell checking protein names are included and correct
# However this won't correct SUPER messed up words or made up words
if corrected_query != '':
print('Checking spelling on ' + query_string)
print(query_string + ' was corrected to: ' + corrected_query)
return corrected_query
else:
return query_string
# This function takes the strain name and a location of the individual fasta file we saved earlier and runs a blast
# Search saving the top 15 hits - then the top hit is found that is a complete genome and the fasta and .gbk of that
# are saved - then we run alignment on the two and return two strings one of them our sequence with '-' and the
# other of our new reference sequence. If a sequence is submitted that needs to be reverse complemented to align
# to a reference the sequence will stay this way
def blast_n_stuff(strain, our_fasta_loc):
# if user provided own reference use that one - also use our specifically chosen reference for some viruses
if args.r:
ding = args.r
ref_seq_gb = ding
# if the user provided a database to use print location and use database
elif args.db:
local_database_location = args.db
print('Searching local blast database at ' + local_database_location)
# blastn with word size of 28 because we're searching off a provided reference we're just going to pull the top
local_blast_cmd = 'blastn -db ' + local_database_location + ' -query ' + our_fasta_loc + \
' -num_alignments 1 -word_size 28 -outfmt 6 -out ' + strain + SLASH + strain \
+ '.blastresults'
subprocess.call(local_blast_cmd, shell=True)
# pull first accession number from our reference database
for line in open(strain + SLASH + strain + '.blastresults'):
ref_seq_gb = line.split('|')[3]
break
# online search
elif args.online:
print('Searching NCBI for the best reference sequence (may take longer for multiple requests due to NCBI '
'throttling)')
record = open(our_fasta_loc).read()
# used to have entrez_query = 'txid10239[ORGN]' as an argument to restrict searches to taxonomic group 'Viruses'
result_handle = NCBIWWW.qblast('blastn', 'nt', record, word_size=28, descriptions=0, alignments=15,
format_type='Text')
with open(strain + SLASH + strain + '.blastresults', 'w') as out_handle:
out_handle.write(result_handle.read())
result_handle.close()
# read through the top hits saved earlier and save the accession number of the best hit that's complete
read_next = False
found = False
for line in open(strain + SLASH + strain + '.blastresults'):
if line[0] == '>':
name_of_virus = ' '.join(line.split()[1:]).split('strain')[0].split('isolate')[0].split('complete')[0].split('partial')[0].split('genomic')[0].split('from')[0].strip()
name_of_virus = name_of_virus.split('/')[0]
ref_seq_gb = line.split()[0][1:]
# last part of these two logic checks is so we avoid the misassembled/mutated viruses
# This is going to get really out of hand if we have to keep blacklisting records
# TODO: pull these out of the database, regenerate and reupload
if 'complete' in line and ref_seq_gb.split('.')[0] not in 'KM551753 GQ153651 L08816 HIVANT70C L20587':
found = True
break
else:
read_next = True
elif read_next:
if 'complete genome' in line and ref_seq_gb.split('.')[0] not in 'KM551753 GQ153651 L08816 HIVANT70C L20587':
found = True
break
else:
read_next = False
# if we don't find any complete genomes just pull the top hit from blast and go from there
if not found:
for line in open(strain + SLASH + strain + '.blastresults'):
if line[0] == '>':
name_of_virus = ' '.join(line.split()[1:]).split('strain')[0].split('isolate')[0].split('complete')[0].split('partial')[0].split('genomic')[0].split('from')[0].strip()
ref_seq_gb = line.split()[0][1:]
break
# default case -- use either of the provided reference databases that we will include
else:
# all virus is the preferred database but we'll switch to compressed if that's what the user downloaded
# this list IS ordered by how much I recommend using these databases
if os.path.isfile('all_virus.fasta.nin'):
local_database_location = 'all_virus.fasta'
elif os.path.isfile('virus_compressed.fasta.nin'):
local_database_location = 'virus_compressed.fasta'
elif os.path.isfile('ref_seq_vir.nin'):
local_database_location = 'ref_seq_vir'
# print a helpful error message and exit
else:
print('No local blast database found in this folder! Please install from the github releases page! '
'(https://github.com/rcs333/VAPiD/releases) Or use vapid with --online (not reccomended)')
print('Exiting...')
exit(0)
print('Searching local blast database at ' + local_database_location)
# we're only going to save one because these our pretty decent reference databases
local_blast_cmd = 'blastn -db ' + local_database_location + ' -query ' + our_fasta_loc + \
' -num_alignments 1 -word_size 28 -outfmt 6 -out ' + strain + SLASH + strain \
+ '.blastresults'
subprocess.call(local_blast_cmd, shell=True)
# pull first accession number
for line in open(strain + SLASH + strain + '.blastresults'):
ref_seq_gb = line.split('|')[3]
break
# Download the reference fasta file from
record = Entrez.read(Entrez.esearch(db='nucleotide', term=ref_seq_gb))
# Download .gbk from Entrez, we'll pull annotations from this file later
h2 = Entrez.efetch(db='nucleotide', id=record["IdList"][0], rettype='gb', retmode='text')
e = open(strain + SLASH + strain + '_ref.gbk', 'w')
e.write(h2.read())
e.close()
# if we've specified our own file remove the one we just found and delete it
if args.f:
os.remove(strain + SLASH + strain + '_ref.gbk')
shutil.copyfile(args.f, strain + SLASH + strain + '_ref.gbk')
# NCBI online tools don't want more than like 1 request every .2 seconds or something so we just sleep for a second here
time.sleep(1)
# because the difference in how this stuff gets saved we have to pull online differently
if not args.online:
for line in open(strain + SLASH + strain + '_ref.gbk'):
if 'DEFINITION' in line:
# this forces removal of 'complete/partial annotations because those get added by genbank and there is no reason to include them'
# we also want to strip off specific strain and isolate names in order to tend towards being more general
name_of_virus = ' '.join(line.split()[1:]).split('strain')[0].split('isolate')[0].split('complete')[0].split('partial')[0].split('genomic')[0].split('from')[0].strip()
# let the user know
print(ref_seq_gb + ' was the selected reference')
print(name_of_virus + ' was the parsed name of the virus')
if args.f:
SeqIO.convert(args.f, "genbank", strain + SLASH + strain + "_ref.fasta", "fasta")
else:
h = Entrez.efetch(db='nucleotide', id=record["IdList"][0], rettype='fasta', retmode='text')
d = open(strain + SLASH + strain + '_ref.fasta', 'w')
d.write(h.read())
d.close()
# mafft rules and the developer of mafft is awesome
z = open(strain + SLASH + strain + '_aligner.fasta', 'w')
fe = open(our_fasta_loc)
for line in fe:
z.write(line)
fe.close()
ge = open(strain + SLASH + strain + '_ref.fasta')
z.write('\n')
for line in ge:
z.write(line)
ge.close()
z.close()
print('Aligning reference and query...')
# Windows
if SLASH == '\\':
# since we include the windows installation of maaft with vapid we can hard code the path
s = 'mafft-win\\mafft.bat --adjustdirection --quiet ' + strain + SLASH + strain + '_aligner.fasta > ' + strain + SLASH + strain + '.ali'
subprocess.call(s, shell=True)
else:
try:
subprocess.call('mafft --adjustdirection --quiet ' + strain + SLASH + strain + '_aligner.fasta > ' + strain + SLASH + strain + '.ali 2>/dev/null',
shell=True)
# print a helpful error message and exit
except:
print('Running on a non windows system, which means you need to install mafft and put it on the sys path '
'yourself.\nI suggest using brew or apt')
exit(0)
ali_list, ali_genomes, dumy_var_never_used = read_fasta(strain + SLASH + strain + '.ali')
need_to_rc = False
# this will create a weird
if '_R_' in ali_list[1]:
if ali_list[1][0:3] == '_R_':
# we need to RC input query and redo
need_to_rc = True
print('Done alignment')
# this is the reverse of what I expect but it works
ref_seq = ali_genomes[1]
our_seq = ali_genomes[0]
# now also returning the accession of the reference for use in the .cmt file as well as a bool for if we need to rerun this block
return name_of_virus, our_seq, ref_seq, ref_seq_gb, need_to_rc
# Takes in two sequences with gaps inserted inside of them and returns arrays that have a -1 in the gap locations and
# count up from 1 in the nucleotide areas - This data structure allows for extremely rapid conversion between relative
# locations in the two sequences although does assume that these genes are of uniform length
# NOTE: This means that when we have reads that like don't have the start codons of the first gene or something we'll
# get a -1 for the start location on our annotation
def build_num_arrays(our_seq, ref_seq):
ref_count = 0
our_count = 0
ref_num_array = []
our_num_array = []
for x in range(0, len(ref_seq)):
if ref_seq[x] != '-':
ref_count += 1
ref_num_array.append(ref_count)
else:
ref_num_array.append(-1)
if our_seq[x] != '-':
our_count += 1
our_num_array.append(our_count)
else:
our_num_array.append(-1)
return our_num_array, ref_num_array
# Takes a gene start index relative to an unaligned reference sequence and then returns the location of the same start
# area on the unaligned sequence that we're annotating using the number arrays to finish
def adjust(given_num, our_num_array, ref_num_array, genome):
found = False
# Handles gene lengths that go off the end of the genome
# 1.6.4 - this is obsolete and a bad implementation, the block at the end of this function takes care of this
# better, I'm leaving this in comments for a while just in case
#if given_num >= len(genome):
# return len(genome)
# Go through our number array and search for the number of interest
if our_num_array[given_num] == '-1':
in_dex = given_num
while our_num_array[in_dex != '-1']:
in_dex += 1
break
return str(our_num_array[in_dex])
else:
found = False
for x in range(0, len(our_num_array)):
if ref_num_array[x] == given_num:
index = x
found = True
break
# now index is the absolute location of what we want
if found:
if our_num_array[index] >= len(genome):
# this is the new handling of when genes run off the end of the submitted genome
return len(genome)
return str(our_num_array[index])
else:
return str(len(genome))
# this opens up the reference .gbk file and pulls all of the annotations, it then adjusts the annotations to the
# relative locations that they should appear on our sequence
def pull_correct_annotations(strain, our_seq, ref_seq, genome):
# Read the reference gbk file and extract lists of all of the protein locations and annotations!
# now we're doing this at the top because we'recalling this earlier
our_seq_num_array, ref_seq_num_array = build_num_arrays(our_seq, ref_seq)
gene_loc_list = []
gene_product_list = []
allow_one = False
all_loc_list = []
all_product_list = []
name_of_the_feature_list = []
# Experimental code for transferring 'gene' annotations from NCBI reference sequence
if args.all:
for line in open(strain + SLASH + strain + '_ref.gbk'):
if ('..' in line) and ( ('gene' in line) or ('mat_peptide' in line) or ('UTR' in line) or ('repeat_region' in line) ):
name_of_the_feature_list.append(line.split()[0])
if 'complement' in line:
whack = re.findall(r'\d+', line.split()[1])
whack.reverse()
all_loc_list.append(whack)
else:
all_loc_list.append(re.findall(r'\d+', line.split()[1]))
allow_one = True
if 'UTR' in line:
allow_one = False
all_product_list.append('')
elif allow_one :
if '/product' in line:
allow_one = False
px_all = line.split('=')[1][1:-2]
all_product_list.append(px_all)
elif '/gene' in line:
allow_one = False
px_all = line.split('=')[1][1:-2]
all_product_list.append(px_all)
elif 'UTR' in name_of_the_feature_list[-1]:
px_all = line.split('=')[1][1:-2]
all_product_list.append(px_all)
allow_one = False
elif '/rpt_type' in line:
px_all = line.split('=')[1][0:-1]
all_product_list.append(px_all)
allow_one = False
elif '/db_xref' in line:
name_of_the_feature_list.pop()
all_loc_list.pop()
allow_one = False
# adjust gene list
#print(all_loc_list)
#print(all_product_list)
#print(name_of_the_feature_list)
for entry in range(0, len(all_loc_list)):
for y in range(0, len(all_loc_list[entry])):
all_loc_list[entry][y] = adjust(int(all_loc_list[entry][y]), our_seq_num_array, ref_seq_num_array, genome)
#print("DONE WITH THE ALL STUFF")
allow_one = False
for line in open(strain + SLASH + strain + '_ref.gbk'):
if ' CDS ' in line and '..' in line:
# this is now going to be a list of numbers, start-stop start-stop
# this line simply makes sure we read in reversed start-stops in the true reversed direction
if 'complement' in line:
whack = re.findall(r'\d+', line)
whack.reverse()
gene_loc_list.append(whack)
else:
gene_loc_list.append(re.findall(r'\d+', line))
allow_one = True
if '/product="' in line and allow_one:
allow_one = False
# Inconsistent naming of protein products
px = line.split('=')[1][1:-2]
# for some weird reason - this is the way we only go in when the flag is passed
# TODO: need to make sure that this is activating properly
if args.spell_check:
new_list = []
px_word_list = px.split()
for word in px_word_list:
if '1' or '2' or '3' or '4' or '5' or '6' or '7' or '8' or '9' or '0' not in word:
new_list.append(spell_check(word))
px = ' '.join(new_list)
if px == 'phospho protein':
px = 'phoshoprotein'
gene_product_list.append(px)
# Adjust every locus so that we actually put in correct annotations
for entry in range(0, len(gene_loc_list)):
for y in range(0, len(gene_loc_list[entry])):
gene_loc_list[entry][y] = adjust(int(gene_loc_list[entry][y]), our_seq_num_array, ref_seq_num_array, genome)
return gene_loc_list, gene_product_list, all_loc_list, all_product_list, name_of_the_feature_list
# takes a strain name and a genome and writes and saves a fasta to the correct directory
def write_fasta(strain, genome):
w = open(strain + SLASH + strain + '.fasta', 'w')
w.write('>' + strain + '\n')
w.write(genome)
w.close()
# Take the name of a virus sample, and write the .cmt file for it using supplied coverage information
# NOTE: only writes coverage length - so now if we want to say our sequencing platform we have to edit this code
# Now also writes in the comment the reference that this subission was annotated off - this should provide some more
# accountability
def write_cmt(sample_name, coverage, ref_gb, did_we_rc):
cmt = open(sample_name + SLASH + 'assembly.cmt', 'w')
cmt.write('##Assembly-Data-START##\n')
if coverage != '':
cmt.write('Coverage\t' + coverage + '\n')
if did_we_rc:
cmt.write('Original input sequence was reverse complemented by MAFFT during the alignment phase')
cmt.write('Created with VAPiD' + VERSION + ' Reference annotations were pulled from ' + ref_gb + '\n')
cmt.write('##Assembly-Data-END##\n')
cmt.close()
# this takes in all of our information and makes a feature table that contains correct annotations for for ribosomal slippage and RNA editing
# - as well as creation of a .pep file for rna editing -- Now we also pass two possibly empty lists to write tbl so we can write gene annotations
def write_tbl(strain, gene_product_list, gene_locations, genome, gene_of_intrest, note, name_o_vir, all_loc_list, all_product_list, full_name, name_of_the_feature_list):
# covers the nipah situation where there's RNA editing on more than 1 protein - if this happens for more viruses I'll need to code a more
# robust sollution, but for now this works
if 'nipah' in name_o_vir.lower():
pep = open(strain + SLASH + strain + '.pep', 'w')
tbl = open(strain + SLASH + strain + '.tbl', 'w')
tbl.write('>Feature ' + full_name)
# This block should write all gene annotations to tbl file as long as we got passed genes, and the only way that will ever happen is if the
# User put the -all flag
if len(all_product_list) > 0:
for x in range(0, len(all_product_list)):
print(all_product_list[x] + str(all_loc_list[x]))
e_flag = ''
s_flag = ''
s_all = all_loc_list[x][0]
e_all = all_loc_list[x][1]
p_all = all_product_list[x]
if int(e_all) >= len(genome):
e_flag = ''
if int(s_all) < 1:
s_flag = '<'
s_all = '1'
if int(e_all) < 1:
e_all = len(genome)
e_flag = '>'
if p_all == 'inverted terminal repeat':
if int(s_all) < (len(genome) / 2):
s_all = 1
else:
e_all = len(genome)
tbl.write('\n' + s_flag + str(s_all) + '\t' + e_flag + str(e_all) + '\trepeat_region\n')
tbl.write('\t\t\tnote\t' + p_all + '\n')
tbl.write('\t\t\trpt_type\tinverted')
else:
tbl.write('\n' + s_flag + str(s_all) + '\t' + e_flag + str(e_all) + '\t' +name_of_the_feature_list[x] + '\n')
if 'UTR' in name_of_the_feature_list[x] or 'gene' in name_of_the_feature_list[x]:
feat_des = 'gene'
elif 'mat_peptide' in name_of_the_feature_list[x] or 'CDS' in name_of_the_feature_list:
feat_des = 'product'
else:
feat_des = 'rpt_type'
tbl.write('\t\t\t' + feat_des + '\t' + p_all)
for x in range(0, len(gene_product_list)):
print(gene_product_list[x] + ' ' + str(gene_locations[x]))
flag = ''
xtra = ''
sflag = ''
product = gene_product_list[x]
if gene_of_intrest in product:
xtra = note
if 'nipah' in name_o_vir.lower():
nts_of_gene = genome[int(gene_locations[x][0]) - 1:int(gene_locations[x][1]) - 1]
if product.lower() == 'v protein':
xtra = '\n\t\t\texception\tRNA Editing\n\t\t\tnote\tRNA Polymerase adds non templated ' \
'G\n\t\t\tprotein_id\tn_1' + strain
start_of_poly_g = nts_of_gene.find('AAAAAGG')
nts_of_gene = nts_of_gene[0:start_of_poly_g + 1] + 'G' + nts_of_gene[start_of_poly_g + 1:]
new_translation = str(Seq(nts_of_gene).translate())
pep.write('>n_1' + strain + '\n' + new_translation)
pep.write('\n')
elif product.lower() == 'w protein':
xtra = '\n\t\t\texception\tRNA Editing\n\t\t\tnote\tRNA Polymerase adds non templated ' \
'G\n\t\t\tprotein_id\tn_2' + strain
start_of_poly_g = nts_of_gene.find('AAAAAGG')
nts_of_gene = nts_of_gene[0:start_of_poly_g + 1] + 'GG' + nts_of_gene[start_of_poly_g + 1:]
new_translation = str(Seq(nts_of_gene).translate())
pep.write('>n_2' + strain + '\n' + new_translation)
pep.write('\n')
if 'HIV' in name_o_vir and ('Pol polyprotein' == product or 'Pol' == product):
sflag = '<'
location_info = gene_locations[x]
if len(location_info) == 4:
start_1 = str(location_info[0])
end_1 = str(location_info[1])
start_2 = str(location_info[2])
end_2 = str(location_info[3])
tbl.write('\n' + start_1 + '\t' + end_1 + '\tCDS\n')
tbl.write(start_2 + '\t' + end_2 + '\n')
tbl.write('\t\t\tproduct\t' + product + '\n')
if 'HEPATITIS B' not in name_o_vir and 'BK polyamavirus' not in name_o_vir:
tbl.write('\t\t\texception\tRibosomal Slippage\n')
else:
start = int(location_info[0])
end = int(location_info[1])
it_count = 0
modifid_orf = False
# won't execute this block of code for complemented genes
#print(genome[end - 3:end].upper())
# this makes sure that our end is in frame, and will adjust hopefully this doesn't break everything
# added a check to only do this in the absence of RNA editing or ribosomal sliippage
if xtra == '' and end != len(genome):
if ((end - start) + 1) % 3 != 0:
end +=1
if ((end - start) + 1) % 3 != 0:
end +=1
if end > start and 'IIIA' not in product.upper():
if (genome[end - 3:end].upper() not in 'TGA,TAA,TAG,UGA,UAA,UAG') and (end < len(genome) - 3) and not re.search('[MRWSYKVHDBN]',genome[end - 3:end].upper()):
if re.search('[MRWSYKVHDBN]',genome[end - 3:end].upper()):
print('Ambiguous base detected in a putative stop codon, this can cause problems with VAPiD annotations')
print('Modifying ORF length for ' + str(product))
end = find_end_stop(genome, start, end)
# This should now correctly annotate assemblies that come in with the very edges chopped off
#print(genome[end - 3:end].upper())
pie = ''
die = ''
if int(start) < 1:
sflag = '<'
pie = str((int(end) % 3) + 1)
start = '1'
if int(end) < 1:
end = len(genome)
flag = '>'
if 'HPIV-1' in name_o_vir or 'human parainfluenza virus 1' in name_o_vir.lower():
if 'C\'' in product or 'Y2' in product:
die = '\n\t\t\ttransl_except\t(pos:' + str(start) + '..' + str(int(start) + 2) + ',aa:Met)'
tbl.write('\n' + sflag + str(start) + '\t' + flag + str(end) + '\tCDS\n')
tbl.write('\t\t\tproduct\t' + product + xtra)
if pie != '':
tbl.write('\n\t\t\tcodon_start\t' + pie)
if die != '':
tbl.write(die)
tbl.write('\n')
tbl.close()
if 'nipah' in name_o_vir.lower():
pep.close()
# Takes a nucleotide sequence and a start and end position [1 indexed] and search for a stop codon from the start
# to the end + 60 so every codon in the provided gene and then 3 after it. Return the first stop codon found or if no
# stop codon is found return the original end value and print a warning
def find_end_stop(genome, start, end):
# save the provided end
start -= 1
old_end = end
end = start + 3
# Search for stop codons in DNA and RNA space until 3 codons after the provided end.
# Turns out 3 codons isn't enough
while genome[end -3:end].upper() not in 'TGA,TAA,TAG,UGA,UAA,UAG' and end <= (old_end + 60):
end += 3
if end == old_end + 60:
print('WARNING no stop codon found, examine reference and original sequence')
return old_end
else:
return end
# takes a single strain name and a single genome and annotates and save the entire virus and annotations package
# returns the "species" of the virus for consolidated .sqn packaging
def annotate_a_virus(strain, genome, metadata, coverage, sbt_loc, full_name, nuc_a_type):
did_we_reverse_complement = False
if not os.path.exists(strain):
os.makedirs(strain)
if '_R_' in strain:
if strain[0:3] == '_R_':
print('WARNING: ' + strain + ' has _R_ as the first part of the sequence charachters YOU HAVE TO CHANGE THIS')
write_fasta(strain, genome)
name_of_virus, our_seq, ref_seq, ref_accession, need_to_rc = blast_n_stuff(strain, strain + SLASH + strain + '.fasta')
if need_to_rc:
print('Input sequence needed to be reverse complemented to align properly.')
new_seq = Seq(genome)
# reverse complement input sequence and overwrite variable
genome = str(new_seq.reverse_complement())
did_we_reverse_complement = True
# overwrite our fasta and this happens before we call write fsa
write_fasta(strain, genome)
name_of_virus, our_seq, ref_seq, ref_accession, need_to_rc = blast_n_stuff(strain, strain + SLASH + strain + '.fasta')
gene_loc_list, gene_product_list, all_loc_list, all_product_list, name_of_the_feature_list = pull_correct_annotations(strain, our_seq, ref_seq, genome)
write_cmt(strain, coverage,ref_accession, did_we_reverse_complement)
write_fsa(strain, name_of_virus, genome, metadata, full_name, nuc_a_type)
extra_stuff = ''
# prime gene of interest so unless we're in one of the specific cases nothing will trigger
gene_of_interest = 'XFNDKLS:NLFKSD:FJNSDLKFJDSLKFJDLFUHE:OPUHFE:LUHILDLKFJNSDLFKJBNDLKFUHSLDUBFKNLKDFJBLSKDJFBLDKS'
if 'respirovirus' in name_of_virus.lower() or 'parainfluenza virus 3' in name_of_virus.lower():
if '3' in name_of_virus:
extra_stuff = '\n\t\t\texception\tRNA Editing\n\t\t\tnote\tRNA Polymerase adds non templated ' \
'Gs\n\t\t\tprotein_id\tn_' + strain
gene_of_interest = 'D protein'
process_para(strain, genome, gene_loc_list, gene_product_list, 'D protein', 'HP3')
elif '1' in name_of_virus:
extra_stuff = 'WEGOTAPARA1'
gene_of_interest ='C\' protein'
if 'parainfluenza virus 4' in name_of_virus.lower():
extra_stuff = '\n\t\t\texception\tRNA Editing\n\t\t\tnote\tRNA Polymerase adds 2 non templated ' \
'G\n\t\t\tprotein_id\tn_' + strain
gene_of_interest = 'phosphoprotein'
if 'P' in gene_product_list:
gene_of_interest = 'P'
elif 'P protein' in gene_product_list:
gene_of_interest = 'P protein'
process_para(strain, genome, gene_loc_list, gene_product_list, gene_of_interest, 'HPIV4a')
if 'measles' in name_of_virus.lower():
extra_stuff = '\n\t\t\texception\tRNA Editing\n\t\t\tnote\tRNA Polymerase adds 1 non templated ' \
'G\n\t\t\tprotein_id\tn_' + strain
gene_of_interest = 'V protein'
process_para(strain, genome, gene_loc_list, gene_product_list, 'V protein', 'MEAS')
if 'mumps' in name_of_virus.lower():
extra_stuff = '\n\t\t\texception\tRNA Editing\n\t\t\tnote\tRNA Polymerase adds 2 non templated ' \
'G\n\t\t\tprotein_id\tn_' + strain
gene_of_interest = 'phosphoprotein'
process_para(strain, genome, gene_loc_list, gene_product_list, gene_of_interest, 'MUMP')
if 'rubulavirus 4' in name_of_virus:
extra_stuff = '\n\t\t\texception\tRNA Editing\n\t\t\tnote\tRNA Polymerase adds 2 non templated ' \
'Gs\n\t\t\tprotein_id\tn_' + strain
gene_of_interest = 'phosphoprotein'
process_para(strain, genome, gene_loc_list, gene_product_list, 'phoshoprotein', 'HP4-1')
if 'metapneumovirus' in name_of_virus.lower():
put_start = int(gene_loc_list[7][0])
#print('start of gene is ' + str(put_start))
orf = genome[put_start - 1:put_start + 4000]
#print('orf length is ' + str(len(orf)))
#print('genome length is ' + str(len(genome)))
orf_trans = str(Seq(orf).translate())
#print('orf translation is ' + orf_trans)
if orf_trans.find('*') != -1:
put_end = (orf_trans.find('*') * 3)
print('putative end is ' + str(put_end))
gene_loc_list[7][1] = put_start + put_end
if 'parainfluenza virus 2' in name_of_virus.lower() or 'rubulavirus 2' in name_of_virus.lower():
#print('Custom code for HPIV2 runnning')
extra_stuff = '\n\t\t\texception\tRNA Editing\n\t\t\tnote\tRNA Polymerase adds 2 non templated ' \
'G\n\t\t\tprotein_id\tn_' + strain
gene_of_interest = 'P protein'
process_para(strain, genome, gene_loc_list, gene_product_list, gene_of_interest, 'HPIV2')
write_tbl(strain, gene_product_list, gene_loc_list, genome, gene_of_interest, extra_stuff, name_of_virus, all_loc_list, all_product_list, full_name, name_of_the_feature_list)
cmd = 'tbl2asn -p ' + strain + SLASH + ' -t ' + sbt_loc + ' -Y ' + strain + SLASH + 'assembly.cmt -V vb '
try:
subprocess.call(cmd, shell=True)
except:
print('tbl2asn not installed, go to https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/ and download the appropriate version')
print('Done with: ' + strain)
print('')
print('')
return name_of_virus
# This function takes a nucleotide sequence that has non-templated G's inserted an unknown number of times and trims
# Them from the end to read into a correct frame - translates the sequence and picks the one with the least number of
# stop codons returns the raw sequence
def pick_correct_frame(one, two):
print('Picking correct reading frame for RNA editing:')
# we already added the G's to the start - and generally we hit the stop codon exactly where the annotation says we
# will so this just avoids some weirdness with passing sequences of length not divisible by three to seq.translate()
while len(one) % 3 != 0:
one = one[:-1]
while len(two) % 3 != 0:
two = two[:-1]
one_trans = str(Seq(one).translate())
two_trans = str(Seq(two).translate())
one_count = one_trans.count('*')
two_count = two_trans.count('*')
# Troubleshooting code that I'm keeping in for when we add more viruses that have non templated G's
#print('adding two Gs gives ' + str(two_count) + ' stop codon(s)')
#print(two_trans)
#print('adding one G gives ' + str(one_count) + ' stop codon(s)')
#print(one_trans)
if one_count < two_count:
#print('chose one')
return one
else:
#print('chose two')
return two
# Takes a virus that has GGGGGG RNA editing and based on the gene that you send it and the name of the virus will
# find that gene in our annotations - add the correct number of G's and then translate the new 'mRNA' and write the
# translation to a .pep file where we can overwrite the sequin auto-translation
def process_para(strain, genome, gene_loc_list, gene_product_list, gene_of_interest, v):
# Extract the gene protected because everything we throw in here are guaranteed to have the gene of interest
print('Looks like this virus has RNA editing, fixing it now')
#print(v)
found_ = False
#print('gene of interest = '+ gene_of_interest)
for g in range(0, len(gene_product_list)):
# flipping this covers whack spacing in protein products
#print('product = '+ gene_product_list[g])
if gene_of_interest in gene_product_list[g]:
nts_of_gene = genome[int(gene_loc_list[g][0]) - 1:int(gene_loc_list[g][1]) - 1]
found_ = True
break
if found_:
# add the correct number of Gs
if v == 'HP3':
start_of_poly_g = nts_of_gene.find('GGGGG', 700, 740)
nts_of_gene_1 = nts_of_gene[0:start_of_poly_g + 1] + 'G' + nts_of_gene[start_of_poly_g + 1:]
nts_of_gene_2 = nts_of_gene[0:start_of_poly_g + 1] + 'GG' + nts_of_gene[start_of_poly_g + 1:]
nts_of_gene = pick_correct_frame(nts_of_gene_1, nts_of_gene_2)
# despite viral zone saying SENDAI adds 1 G adding two removes stop codon's - remains tbd if variable
elif v == 'SENDAI':
start_of_poly_g = nts_of_gene.find('AAAAGGG')
nts_of_gene_1 = nts_of_gene[0:start_of_poly_g + 1] + 'G' + nts_of_gene[start_of_poly_g + 1:]
nts_of_gene_2 = nts_of_gene[0:start_of_poly_g + 1] + 'GG' + nts_of_gene[start_of_poly_g + 1:]
nts_of_gene = pick_correct_frame(nts_of_gene_1, nts_of_gene_2)
elif v == 'HP4-1':
start_of_poly_g = nts_of_gene.find('AAGAGG', 435, 460)
nts_of_gene = nts_of_gene[0:start_of_poly_g + 1] + 'GG' + nts_of_gene[start_of_poly_g + 1:]
elif v == 'MUMP':
start_of_poly_g = nts_of_gene.find('AAGAGG', 445, 465)
nts_of_gene = nts_of_gene[0:start_of_poly_g + 1] + 'GG' + nts_of_gene[start_of_poly_g + 1:]
elif v == 'MEAS':
start_of_poly_g = nts_of_gene.find('AAAAAGG', 674, 695)
nts_of_gene = nts_of_gene[0:start_of_poly_g + 1] + 'G' + nts_of_gene[start_of_poly_g + 1:]
elif v == 'NIPAH':
start_of_poly_g = nts_of_gene.find('AAAAAAGG', 705, 725)
nts_of_gene = nts_of_gene[0:start_of_poly_g + 1] + 'G' + nts_of_gene[start_of_poly_g + 1:]
elif v == 'HPIV4a':
start_of_poly_g = nts_of_gene.find('AAGAGG', 439, 460)
nts_of_gene = nts_of_gene[0:start_of_poly_g + 1] + 'GG' + nts_of_gene[start_of_poly_g + 1:]
elif v == 'HPIV2':
#print('HPIV2 is getting here correctly')
start_of_poly_g = nts_of_gene.find('AAGAGG', 450, 490)
nts_of_gene_1 = nts_of_gene[0:start_of_poly_g + 1] + 'G' + nts_of_gene[start_of_poly_g + 1:]
nts_of_gene_2 = nts_of_gene[0:start_of_poly_g + 1] + 'GG' + nts_of_gene[start_of_poly_g + 1:]
nts_of_gene = pick_correct_frame(nts_of_gene_1, nts_of_gene_2)
new_translation = str(Seq(nts_of_gene).translate())
pep = open(strain + SLASH + strain + '.pep', 'w')
pep.write('>n_' + strain + '\n' + new_translation)
pep.write('\n')
pep.close()
# Writes an fsa file based of the name, strain and genome, honestly we should allow for much more flexibility
# and automation here
def write_fsa(strain, name_of_virus, virus_genome, metadata, full_name, nucleic_acid_type):
fsa = open(strain + SLASH + strain + '.fsa', 'w')
fsa.write('>' + full_name.strip() + ' [organism=' + name_of_virus + ']' + '[moltype=genomic] [host=Human] [gcode=1] '
'[molecule=' + nucleic_acid_type + ']' + metadata + '\n')
fsa.write(virus_genome)
fsa.write('\n')
fsa.close()
# Build the metadata for every virus that's been submitted
def do_meta_data(strain, sheet_exists, full_name):
first = True
s = ''
coverage = ''
if sheet_exists:
for line in open(metadata_sheet_location):
if first:
names = line.split(',')
first = False
elif line.split(',')[0] == strain:
for dex in range(0, len(names)):
if names[dex].strip() == 'coverage':
coverage = line.split(',')[dex].strip()
elif names[dex].strip() == 'full_name':
if line.split(',')[dex].strip() != '':
full_name = line.split(',')[dex].strip()
else:
s = s + ' [' + names[dex].strip() + '=' + line.split(',')[dex].strip() + ']'
break
if s == '':
print('metadata not found in provided .csv or .csv not created - time for minimal manual entry for sequence - ' + strain)
col = ' [collection-date=' + input('Enter collection date in the format (23-Mar-2005, Mar-2005, or 2005): ').strip() + ']'
con = ' [country=' + input('Enter country sample was collected in (example - USA): ').strip() + ']'
st = ' [strain=' + input('Enter strain name - if unknown just put ' + strain + ': ').strip() + ']'
cov = input('Enter coverage as a number (example 42.3), if unknown just leave this blank and hit enter: ')
meta_data = col + con + st
coverage = cov
# Here's one line of code to unilaterally standardize defualt naming scheme
if full_name == '':
full_name = strain + ' (' + con.split('=')[1][:-1] + '/' + col.split('=')[1][:-1] + ')'
else:
meta_data = s
if full_name == '':
full_name = strain
print('Automatic strain naming failed but submission will proceed without metadata appended to the fasta header.')
return meta_data, coverage, full_name
# Takes the name of a recently created .gbf file and checks it for stop codons (which usually indicate something went
# wrong. NOTE: requires tbl2asn to have successfully created a .gbf file or this will fail catastrophically
# Now also returns if stop codons are in it or not so they'll be omitted during the packaging phase
def check_for_stops(sample_name):
stops = 0
for line in open(sample_name + SLASH + sample_name + '.gbf'):
if '*' in line:
stops += 1
if stops > 0:
print('WARNING: ' + sample_name + ' contains ' + str(stops) + ' stop codon(s)!')
return True
else:
return False
# quick check to make sure slashes go the right way on both Windows and Mac/Linux
def check_os():
if platform.system() == 'Linux' or platform.system() == 'Darwin':
return '/'
else:
return '\\'
if __name__ == '__main__':
start_time = timeit.default_timer()
SLASH = check_os()
parser = argparse.ArgumentParser(description='Version ' + VERSION + '\nPrepares FASTA file for NCBI Genbank submission '
'through local or online blastn-based annotation of viral sequences. '
'In default mode, VAPiD searches this folder for our viral databases.')
parser.add_argument('fasta_file', help='Input file in .fasta format containing complete or near complete '
'genomes for all the viruses that you want to have annotated')
parser.add_argument('author_template_file_loc', help='File path for the NCBI-provided sequence author template file'
' (should have a .sbt extension)\n https://submit.ncbi.nlm.nih.gov/genbank/template/submission/')
parser.add_argument('--metadata_loc', help='If you\'ve input the metadata in the provided csv, specify the location '
'with this optional argument. Otherwise all metadata will be manually prompted for.')
parser.add_argument('--r', help='If you want to specify a specific NCBI reference, put the accession number here '
'- must be the exact accession number - note: feature forces all sequences in FASTA to be this viral species.')
parser.add_argument('--f', help='specify a custom gbf file that you would like to annotate off of')
parser.add_argument('--db', help='specify the local blast database name. You MUST have blast+ with blastn'
'installed correctly on your system path for this to work.')
parser.add_argument('--online',action='store_true', help='Force VAPiD to blast against online database. This is good for machines that don\'t '
'have blast+ installed or if the virus is really strange.'
'Warning: this can be EXTREMELY slow, up to ~5-25 minutes a virus')
parser.add_argument('--spell_check', action='store_true', help='Turn on spellchecking for protein annoations ')
parser.add_argument('--all', action='store_true', help='Use this flag to transfer ALL annotations from reference, this is largely untested')
parser.add_argument('--slashes', action='store_true', help='Use this flag to allow any characters in the name of your virus - This allows '
'you to submit with a fasta file formated like >Sample1 (Human/USA/2016/A) Complete CDS'
' make sure that your metadata file only contains the first part of your name \'Sample1\' in the example above. '
'You can also submit names with slashes by specifying in the metadata sheet under the header full_name, if you do that '
'you do not need to use this flag')
parser.add_argument('--dna', action='store_true', help='Make all files annotated by this run be marked as DNA instead of the default (RNA)')
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
fasta_loc = args.fasta_file
if args.dna:
nuc_acid_type = 'DNA'
else:
nuc_acid_type = 'RNA'
sbt_file_loc = args.author_template_file_loc
virus_strain_list, virus_genome_list, full_name_list = read_fasta(fasta_loc, args.slashes)
strain2species = {}
strain2stops = {}
meta_list = []
coverage_list = []
if args.metadata_loc:
metadata_sheet_location = args.metadata_loc
for x in range(0, len(virus_strain_list)):
metadata, coverage, full_name_list[x] = do_meta_data(virus_strain_list[x], True, full_name_list[x])
meta_list.append(metadata)
coverage_list.append(coverage)
else:
for x in range(0, len(virus_strain_list)):
metadata, coverage, full_name_list[x] = do_meta_data(virus_strain_list[x], False, full_name_list[x])
meta_list.append(metadata)
coverage_list.append(coverage)
for x in range(0, len(virus_strain_list)):
strain2species[virus_strain_list[x]] = annotate_a_virus(virus_strain_list[x], virus_genome_list[x],
meta_list[x], coverage_list[x], sbt_file_loc, full_name_list[x],nuc_acid_type)
# now we've got a map of [strain] -> name of virus (with whitespace)
for name in virus_strain_list:
# now we've got a map of [strain] -> boolean value if there are stops or not
strain2stops[name] = check_for_stops(name)
if len(name) > 23:
print('WARNING: ' + name + ' is over 23 characters, which means that your gbf file will be corrupted')
time = str(timeit.default_timer() - start_time)
newtime = time.split('.')[0] + '.' + time.split('.')[1][0:1]
print('Done, did ' + str(len(virus_strain_list)) + ' viruses in ' + newtime + ' seconds')