forked from wangpinggl/TREQS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
73 lines (61 loc) · 3.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
'''
@author Ping Wang and Tian Shi
Please contact [email protected] or [email protected]
'''
import argparse
import torch
from LeafNATS.utils.utils import str2bool
parser = argparse.ArgumentParser()
'''
Use in the framework and cannot remove.
'''
parser.add_argument('--task', default='train', help='train | validate | test | evaluate')
parser.add_argument('--data_dir', default='mimicsql_data/mimicsql_natural', help='directory that store the data.')
parser.add_argument('--file_train', default='train.json', help='Training')
parser.add_argument('--file_val', default='dev.json', help='validation')
parser.add_argument('--file_test', default='test.json', help='test data')
parser.add_argument('--n_epoch', type=int, default=20, help='number of epochs.')
parser.add_argument('--batch_size', type=int, default=16, help='batch size.')
parser.add_argument('--checkpoint', type=int, default=100, help='How often you want to save model?')
parser.add_argument('--val_num_batch', type=int, default=100, help='how many batches')
parser.add_argument('--nbestmodel', type=int, default=5, help='How many models you want to keep?')
parser.add_argument('--continue_training', type=str2bool, default=True, help='Do you want to continue?')
parser.add_argument('--train_base_model', type=str2bool, default=False, help='True: Use Pretrained Param | False: Transfer Learning')
parser.add_argument('--use_move_avg', type=str2bool, default=False, help='move average')
parser.add_argument('--use_optimal_model', type=str2bool, default=True, help='Do you want to use the best model?')
parser.add_argument('--model_optimal_key', default='0,0', help='epoch,batch')
parser.add_argument('--is_lower', type=str2bool, default=True, help='convert all tokens to lower case?')
'''
User specified parameters.
'''
parser.add_argument('--device', default=torch.device("cuda:0"), help='device')
parser.add_argument('--file_vocab', default='vocab', help='file store training vocabulary.')
parser.add_argument('--max_vocab_size', type=int, default=50000, help='max number of words in the vocabulary.')
parser.add_argument('--word_minfreq', type=int, default=5, help='min word frequency')
parser.add_argument('--emb_dim', type=int, default=128, help='source embedding dimension')
parser.add_argument('--src_hidden_dim', type=int, default=256, help='encoder hidden dimension')
parser.add_argument('--trg_hidden_dim', type=int, default=256, help='decoder hidden dimension')
parser.add_argument('--src_seq_len', type=int, default=400, help='length of source documents.')
parser.add_argument('--trg_seq_len', type=int, default=100, help='length of target documents.')
parser.add_argument('--nLayers', type=int, default=1, help='Encoder RNN layers')
parser.add_argument('--learning_rate', type=float, default=0.0005, help='learning rate.')
parser.add_argument('--grad_clip', type=float, default=2.0, help='clip the gradient norm.')
parser.add_argument('--file_output', default='output.json', help='test output file')
parser.add_argument('--beam_size', type=int, default=5, help='beam size.')
parser.add_argument('--copy_words', type=str2bool, default=True, help='Do you want to copy words?')
# scheduler
parser.add_argument('--step_size', type=int, default=2, help='---')
parser.add_argument('--step_decay', type=float, default=0.8, help='---')
args = parser.parse_args()
if args.task == 'train' or args.task == 'validate' or args.task == 'test':
from model import modelABS
model = modelABS(args)
if args.task == "train":
model.train()
if args.task == "validate":
model.validate()
if args.task == "test":
model.test()
if args.task == "evaluate":
from LeafNATS.eval_scripts.eval_pyrouge_v2 import run_pyrouge
run_pyrouge(args)