forked from rujunhan/ConditionalEmbeddings
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
225 lines (181 loc) · 7.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import csv
import time
from pathlib import Path
import wandb
import torch.optim as optim
from tqdm import tqdm
from BBP import ConditionalBBP
from datastream import load_data
from utils import *
class MultipleOptimizer:
def __init__(self, *op):
self.optimizers = op
def zero_grad(self):
for op in self.optimizers:
op.zero_grad()
def step(self):
for op in self.optimizers:
op.step()
def main(args):
embedding_size = args.emb
batch_size = args.batch
vocab = np.load(str(args.vocab), allow_pickle=True).item()
n_words = len(vocab)
batch_iterator = load_data(args)
n_batch = int(np.ceil(batch_iterator.data_size / batch_size))
print(f"total number of batches: {str(n_batch)}")
args.num_batches = batch_iterator.data_size
model = ConditionalBBP(n_words, embedding_size, args)
if args.cuda:
model.cuda()
if args.optim == 'adam':
opt_sparse = optim.SparseAdam(
[model.out_embed.weight, model.in_embed.weight, model.out_rho.weight, model.in_rho.weight], lr=args.lr)
opt_dense = optim.Adam([model.covariates.weight, model.linear.weight], lr=args.lr)
optimizer = MultipleOptimizer(opt_sparse, opt_dense)
elif args.optim == 'adagrad':
optimizer = optim.Adagrad(model.parameters(), lr=args.lr)
losses = []
print("start training model...\n")
start_time = time.time()
if args.load_model:
model, optimizer, loss, epoch = load_checkpoint(
model, optimizer, args.best_model_save_file
)
print("train %s epochs before, loss is %s" % (epoch, loss))
loss_file = open(Path(args.saveto) / "loss.csv", "w")
writer = csv.writer(loss_file)
writer.writerow(["epoch", "batch", "curr_loss", "total_loss"])
# W&B
wandb.init(
project='bbb-uncertainty',
config=args,
name=args.run_id,
id=args.run_id
)
wandb.watch(model, log="all")
for epoch in tqdm(range(args.n_epochs), desc="Epoch", position=0, leave=True):
model.train()
total_loss = 0
i = 0
for in_v, out_v, cvrs in tqdm(
batch_iterator, total=batch_iterator.data_size, desc="Batch", position=1, leave=False
):
i += 1
w = args.temper_param
if args.cuda:
torch.cuda.empty_cache()
in_v, out_v, cvrs = in_v.cuda(), out_v.cuda(), cvrs.cuda()
if batch_iterator.count % 100000 == 0:
print(
f"training epoch {str(epoch)}: completed {str(round(100 * batch_iterator.count / batch_iterator.data_size, 2))} %"
)
#print(n)
model.zero_grad()
loss = model(in_v, out_v, cvrs, w, i)
loss.backward()
optimizer.step()
curr_loss = loss.data.cpu().numpy().item()
# Check if curr_loss is NaN
if curr_loss != curr_loss:
print(f"loss is NaN at epoch {str(epoch)} batch {str(i)}, exiting...")
exit()
total_loss += curr_loss
writer.writerow([epoch, i, curr_loss, total_loss])
if args.optim == 'adagrad':
step_lr = optimizer.param_groups[0]['lr']
elif args.optim == 'adam':
step_lr = optimizer.optimizers[0].param_groups[0]['lr']
wandb.log({"Step loss": curr_loss, 'Epoch': epoch, 'step': i,
'Learning rate': step_lr})
ave_loss = total_loss / n_batch
print("average loss is: %s" % str(ave_loss))
losses.append(ave_loss)
end_time = time.time()
print("%s seconds elapsed" % str(end_time - start_time))
is_best = False
if epoch == 0:
is_best = True
wandb.run.summary['best_loss'] = ave_loss
elif ave_loss < losses[epoch - 1]:
is_best = True
wandb.run.summary['best_loss'] = ave_loss
if args.optim == 'adagrad':
opt_state_dict = optimizer.state_dict()
elif args.optim == 'adam':
opt_state_dict = optimizer.optimizers[0].state_dict()
save_checkpoint(
{
"epoch": epoch + 1,
"args": args,
"state_dict": model.state_dict(),
"loss": ave_loss,
"optimizer": opt_state_dict,
},
is_best,
args.best_model_save_file,
)
wandb.log({"Epoch loss": ave_loss, 'Epoch': epoch})
loss_file.close()
print(losses)
wandb.finish()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Corpus and paths
parser.add_argument("-vocab", type=str, default="coha")
parser.add_argument("-source", type=str)
parser.add_argument("-saveto", type=str)
parser.add_argument("-file_stamp", type=str, default="coha")
parser.add_argument("-source_file", type=str)
parser.add_argument("-best_model_save_file", type=str, default="model_best.pth.250.tar")
parser.add_argument("-label_map", type=list)
parser.add_argument("-run_id", type=str, required=True)
parser.add_argument("-run_location", type=str, choices=['local', 'sherlock'])
parser.add_argument("-name", type=str, required=True)
parser.add_argument("-start_period", type=int, required=False, default=181)
parser.add_argument("-end_period", type=int, required=False, default=201)
# Hyperparameters
parser.add_argument("-emb", type=int, default=300)
parser.add_argument("-batch", type=int, default=1)
parser.add_argument("-n_epochs", type=int, default=1)
parser.add_argument("-seed", type=int, default=123)
parser.add_argument("-lr", type=float, default=0.05)
parser.add_argument("-skips", type=int, default=3)
parser.add_argument("-negs", type=int, default=6)
parser.add_argument("-initialize", type=str, default='BBB', choices=['kaiming', 'word2vec', 'BBB'])
parser.add_argument("-optim", type=str, default='adagrad', choices=['adagrad', 'adam'])
parser.add_argument("-num_batches", type=int, required=False)
parser.add_argument("-similarity", type=str, default='dot_product', choices=['dot_product', 'cosine'])
parser.add_argument("-no_mlp_layer", type=bool, default=False)
# Bayesian params
parser.add_argument("-prior_weight", type=float, default=0.5)
parser.add_argument("-sigma_1", type=float, default=1)
parser.add_argument("-sigma_2", type=float, default=0.2)
parser.add_argument("-kl_tempering", type=str, choices=['none', 'uniform', 'blundell'])
parser.add_argument("-temper_param", type=float, default=1.)
parser.add_argument("-scaling", type=float, default=1.)
#parser.add_argument("-weight_scheme", type=int, default=1)
# Training set up
parser.add_argument("-cuda", type=bool, default=False)
parser.add_argument("-load_model", type=float, default=False)
args = parser.parse_args()
if args.run_location == 'sherlock':
base_dir = Path('/oak/stanford/groups/deho/legal_nlp/WEB')
elif args.run_location == 'local':
base_dir = Path(__file__).parent
args.source = base_dir / "data" / args.name / "processed"
args.saveto = base_dir / "data" / args.name / "results"
args.saveto.mkdir(parents=True, exist_ok=True)
args.vocab = args.source / f"vocab_freq.npy"
args.source_file = args.source / f"{args.name}_freq.txt"
args.function = "NN"
args.file_stamp = args.name
args.best_model_save_file = args.saveto / f"model_best_{args.file_stamp}_{args.run_id}.pth.tar"
if os.path.exists(args.best_model_save_file):
raise Exception('[ERROR] Weights path already exists. Run ID must be unique.')
args.label_map = {str(v): k for k, v in enumerate(range(args.start_period, args.end_period))}
if args.cuda:
torch.cuda.manual_seed(args.seed)
print("Using CUDA...")
main(args)