-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
302 lines (267 loc) · 10 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import json
import random
import pandas as pd
from pandas.core.frame import DataFrame
from settings import (
F1D_PATH,
F1SUPP_PATH,
F2D_PATH,
F2SUPP_PATH,
F3D_PATH,
F3SUPP_PATH,
FD_SAMPLE_PATH,
FOWLER_SCORES_PATH,
FSUPP_SAMPLE_PATH,
RANDOM_SEED,
SCDB_LEGACY_PATH,
SCDB_PATH,
SCDB_SAMPLE_PATH,
SCOTUS_MAJORITY_OPINIONS_DIRECTORY,
SCOTUS_SHEPARDS_SAMPLE,
SHEPARDS_PATH,
SONGER_DB_PATH,
SONGER_SAMPLE_PATH,
)
from utils import (
get_circuit_from_cap_id,
get_disposition_from_scdb_id,
get_disposition_from_songer_id,
get_majority_author_from_cap_dict,
get_state_from_cap_slug,
)
random.seed(RANDOM_SEED)
###################################
# Generate SCOTUS data
###################################
SCDB: DataFrame = pd.read_csv(SCDB_PATH, index_col=False, encoding="ISO-8859-1")
SCDB_LEGACY: DataFrame = pd.read_csv(
SCDB_LEGACY_PATH, index_col=False, encoding="ISO-8859-1"
)
SCDB = pd.concat([SCDB, SCDB_LEGACY]).reset_index().sort_values("caseId")
FOWLER_SCORES: DataFrame = pd.read_csv(FOWLER_SCORES_PATH, index_col=False)
SCDB = SCDB.merge(FOWLER_SCORES, how="left", left_on="lexisCite", right_on="lex_id")
# Filter data
scdb_sample: DataFrame = SCDB[
SCDB.majOpinWriter.notnull()
& SCDB.caseDisposition.notnull()
& SCDB.issueArea.notnull()
& SCDB.usCite.notnull()
& SCDB.caseName.notnull()
].copy()
scdb_sample.term = scdb_sample.term.astype("int")
scdb_sample.issueArea = scdb_sample.issueArea.astype("int")
scdb_sample.majOpinWriter = scdb_sample.majOpinWriter.astype("int")
scdb_sample.caseDisposition = scdb_sample.caseDisposition.astype("int")
scdb_sample.partyWinning = scdb_sample.partyWinning.astype("int")
scdb_sample["disposition"] = scdb_sample.caseDisposition.apply(
get_disposition_from_scdb_id
) # Create coarsened disposition column
scdb_sample = scdb_sample[scdb_sample.partyWinning != 2] # Filter out unclear winners
scdb_sample = scdb_sample[
scdb_sample.disposition != ""
] # Filter out unclear dispositions
# Sample from strata
scdb_sample = scdb_sample.groupby("term").apply(
lambda x: x.sample(
len(x) if len(x) < 25 else 25, replace=False, random_state=RANDOM_SEED
)
) # Sample uniformly conditional on year
# Merge with majority opinion content
def get_majority_opinion(file_name: str):
try:
with open(SCOTUS_MAJORITY_OPINIONS_DIRECTORY + file_name + ".txt", "r") as file:
return file.read()
except FileNotFoundError:
return ""
scdb_sample["majority_opinion"] = scdb_sample["lexisCite"].apply(get_majority_opinion)
scdb_sample = scdb_sample[
scdb_sample.majority_opinion != ""
] # Filter out cases without a majority opinion
scdb_sample = scdb_sample.sample(
5000, replace=False, random_state=RANDOM_SEED
) # Downsample to 5000
# Save to disk
scdb_sample.to_csv(SCDB_SAMPLE_PATH, index=False)
###################################
# Generate COA data (CAP)
###################################
files: dict = {
"supp1": {"path": F1D_PATH, "cases": 72368},
"supp2": {"path": F2D_PATH, "cases": 275122},
"supp3": {"path": F3D_PATH, "cases": 141483},
}
coa_sample: list = []
for v in files.values():
sample_lines: list[int] = random.sample(
range(v["cases"]), int(v["cases"] * 0.2)
) # Only load a part of the data into memory
sample_lines.sort()
with open(v["path"], "r") as f:
for i, line in enumerate(f):
if i == sample_lines[0]:
coa_sample.append(json.loads(line))
sample_lines.pop(0)
if not sample_lines:
break
# Limit to only post-1895 cases (very few earlier ones are published in the F. reporter.)
coa_sample_df: DataFrame = pd.DataFrame(coa_sample)
coa_sample_df["year"] = coa_sample_df.decision_date.str[0:4].astype(int)
coa_sample_df = coa_sample_df[coa_sample_df.year >= 1895]
# Filter out cases with missing authors
coa_sample_df["majority_author"] = coa_sample_df["casebody"].apply(
lambda x: get_majority_author_from_cap_dict(x)
)
coa_sample_df = coa_sample_df[coa_sample_df.majority_author.notnull()]
# Create year-circuit strata
coa_sample_df["circuit"] = coa_sample_df["court"].apply(
lambda x: get_circuit_from_cap_id(x["id"])
)
coa_sample_df = coa_sample_df[coa_sample_df["circuit"] != 99]
coa_sample_df["stratum"] = (
coa_sample_df["circuit"].astype(str) + "_" + coa_sample_df["year"].astype(str)
)
# Sample from strata
coa_sample_df = coa_sample_df.groupby("stratum").apply(
lambda x: x.sample(
len(x) if len(x) < 4 else 4, replace=False, random_state=RANDOM_SEED
)
)
coa_sample_df = coa_sample_df.sample(
5000, replace=False, random_state=RANDOM_SEED
) # Downsample to 5000
coa_sample_df.reset_index(drop=True, inplace=True)
coa_sample_df.to_csv(FD_SAMPLE_PATH, index=False)
###################################
# Generate COA data (Songer)
###################################
coa_sample_df2: DataFrame = pd.read_csv(SONGER_DB_PATH, index_col=False)
# Filter out cases with missing names
coa_sample_df2 = coa_sample_df2[coa_sample_df2.case_name.notnull()]
# Create year-circuit strata
coa_sample_df2.loc[coa_sample_df2["circuit"] == 0, "circuit"] = 13 # 0 == DC circuit
coa_sample_df2["stratum"] = (
coa_sample_df2["circuit"].astype(str) + "_" + coa_sample_df2["year"].astype(str)
)
# Filter out cases with unclear dispositions
coa_sample_df2["disposition"] = coa_sample_df2["treat"].apply(
get_disposition_from_songer_id
)
coa_sample_df2 = coa_sample_df2[coa_sample_df2.disposition.notnull()]
coa_sample_df2["disposition"] = coa_sample_df2["disposition"].astype(int)
# Sample from strata
coa_sample_df2 = coa_sample_df2.groupby("stratum").apply(
lambda x: x.sample(
len(x) if len(x) < 6 else 6, replace=False, random_state=RANDOM_SEED
)
)
coa_sample_df2 = coa_sample_df2.sample(
5000, replace=False, random_state=RANDOM_SEED
) # Downsample to 5000
coa_sample_df2.reset_index(drop=True, inplace=True)
coa_sample_df2.to_csv(SONGER_SAMPLE_PATH, index=False)
###################################
# Generate USDC data
###################################
files = {
"supp1": {"path": F1SUPP_PATH, "cases": 214096},
"supp2": {"path": F2SUPP_PATH, "cases": 115461},
"supp3": {"path": F3SUPP_PATH, "cases": 36685},
}
usdc_sample: list = []
for v in files.values():
with open(v["path"], "r") as f:
for i, line in enumerate(f):
usdc_sample.append(json.loads(line))
# Limit to only post-1932 cases (very few earlier ones are published in the F. Supp.)
usdc_sample_df: DataFrame = pd.DataFrame(usdc_sample)
usdc_sample_df["year"] = usdc_sample_df.decision_date.str[0:4].astype(int)
usdc_sample_df = usdc_sample_df[usdc_sample_df.year >= 1932]
# Filter out cases with missing authors
usdc_sample_df["majority_author"] = usdc_sample_df["casebody"].apply(
lambda x: get_majority_author_from_cap_dict(x)
)
usdc_sample_df = usdc_sample_df[usdc_sample_df.majority_author.notnull()]
# Create year-state strata
usdc_sample_df["state"] = usdc_sample_df["court"].apply(
lambda x: get_state_from_cap_slug(x["slug"])
)
usdc_sample_df = usdc_sample_df[usdc_sample_df["state"] != "misc"]
usdc_sample_df["stratum"] = (
usdc_sample_df["state"].astype(str) + "_" + usdc_sample_df["year"].astype(str)
)
# Sample from strata
usdc_sample_df = usdc_sample_df.groupby("stratum").apply(
lambda x: x.sample(
len(x) if len(x) < 2 else 2, replace=False, random_state=RANDOM_SEED
)
) # 50 * (2021-1932) ~= 8900
usdc_sample_df = usdc_sample_df.sample(
5000, replace=False, random_state=RANDOM_SEED
) # Downsample to 5000
usdc_sample_df.reset_index(drop=True, inplace=True)
usdc_sample_df.to_csv(FSUPP_SAMPLE_PATH, index=False)
###################################
# Generate SCOTUS Shepard's data
###################################
SHEPARDS_DB: DataFrame = pd.read_csv(SHEPARDS_PATH, index_col=False)
# Filter to SCOTUS data and merge with SCDB
scotus_shepards_sample: DataFrame = SHEPARDS_DB[SHEPARDS_DB.supreme_court == 1]
scotus_shepards_sample = (
scotus_shepards_sample.merge(
SCDB[["lex_id", "caseName", "usCite"]],
how="left",
left_on="citing_case",
right_on="lex_id",
)
.drop("lex_id", axis=1)
.rename(columns={"caseName": "citing_case_name", "usCite": "citing_case_us_cite"})
)
scotus_shepards_sample = (
scotus_shepards_sample.merge(
SCDB[["lex_id", "caseName", "usCite"]],
how="left",
left_on="cited_case",
right_on="lex_id",
)
.drop("lex_id", axis=1)
.rename(columns={"caseName": "cited_case_name", "usCite": "cited_case_us_cite"})
)
scotus_shepards_sample = scotus_shepards_sample.dropna(subset=["citing_case_name"])
scotus_shepards_sample = scotus_shepards_sample.dropna(subset=["cited_case_name"])
# Take sample of data
scotus_shepards_sample = scotus_shepards_sample[
scotus_shepards_sample.shepards.isin(
[
"distinguished",
"criticized",
"limit",
"questioned",
"overrul",
"followed",
"parallel",
]
)
]
scotus_shepards_sample = scotus_shepards_sample.drop_duplicates(
subset=["citing_case"]
) # Filter out duplicate citing cases to avoid clustering of hallucinations
scotus_shepards_sample = scotus_shepards_sample.groupby("citing_case_year").apply(
lambda x: x.sample(
len(x) if len(x) < 35 else 35, replace=False, random_state=RANDOM_SEED
)
) # Sample uniformly conditional on year
scotus_shepards_sample.citing_case_year = (
scotus_shepards_sample.citing_case_year.astype("int")
)
scotus_shepards_sample.cited_case_year = scotus_shepards_sample.cited_case_year.astype(
"int"
)
scotus_shepards_sample = scotus_shepards_sample.sample(
5000, replace=False, random_state=RANDOM_SEED
) # Downsample to match total sample size of normal SCOTUS data
# Coarsen Shepard's codes into binary positive/negative
scotus_shepards_sample["agree"] = scotus_shepards_sample.shepards.isin(
["followed", "parallel"]
).astype("int")
# Save to disk
scotus_shepards_sample.to_csv(SCOTUS_SHEPARDS_SAMPLE, index=False)