- Installation
- Getting Started
- Building Type-Safe SQL
- Creating a Table
- Inserting Rows
- Selecting Rows
- Updating Rows
- Deleting Rows
- Transactions and Savepoints
- Altering the Schema
- Custom Types
- Other Operators
- Core SQLite Functions
- Aggregate SQLite Functions
- Custom SQL Functions
- Custom Collations
- Full-text Search
- Executing Arbitrary SQL
- Logging
Note: SQLite.swift requires Swift 1.2 (and Xcode 6.3) or greater.
CocoaPods is a dependency manager for Cocoa projects. To install SQLite.swift with CocoaPods:
-
Make sure CocoaPods is installed (SQLite.swift requires version 0.37 or greater).
-
Update your Podfile to include the following:
use_frameworks! pod 'SQLite.swift', git: 'https://github.com/stephencelis/SQLite.swift.git' # pod 'SQLite.swift/Cipher', git: ... # instead, for SQLCipher support
-
Run
pod install
.
To install SQLite.swift as an Xcode sub-project:
-
Drag the SQLite.xcodeproj file into your own project. (Submodule, clone, or download the project first.)
-
In your target’s Build Phases, add SQLite to the Target Dependencies build phase.
-
Add SQLite.framework to the Link Binary With Libraries build phase.
-
Add SQLite.framework to a Copy Files build phase with a Frameworks destination. (Add a new build phase if need be.)
You should now be able to import SQLite
from any of your target’s source files and begin using SQLite.swift.
Note: To install with CocoaPods, see above.
To install SQLite.swift with SQLCipher support:
-
Make sure the sqlcipher working copy is checked out in Xcode. If sqlcipher.xcodeproj is unavailable (i.e., it appears red), go to the Source Control menu and select Check Out sqlcipher… from the sqlcipher menu item.
-
Follow the instructions above with the SQLiteCipher target, instead.
Note: By default, SQLCipher compiles without support for full-text search. If you intend to use FTS4, make sure you add the following to Other C Flags in the Build Settings of the sqlcipher target (in the sqlcipher.xcodeproj project):
-DSQLITE_ENABLE_FTS4
-DSQLITE_ENABLE_FTS3_PARENTHESIS
It’s possible to use SQLite.swift in a target that doesn’t support frameworks, including iOS 7 apps and OS X command line tools, though it takes a little extra work.
-
In your target’s Build Phases, add libsqlite3.dylib to the Link Binary With Libraries build phase.
-
Copy the SQLite.swift source files (from its SQLite directory) into your Xcode project.
-
Add the following lines to your project’s bridging header (a file usually in the form of
$(TARGET_NAME)-Bridging-Header.h
).#import <sqlite3.h> #import "SQLite-Bridging.h"
Note: Adding SQLite.swift source files directly to your application will both remove the
SQLite
module namespace (no need—or ability—toimport SQLite
) and expose internal functions and variables. You will need to rename anything that conflicts with code of your own. Please report any bugs (e.g., segfaults) you encounter.
To use SQLite.swift classes or structures in your target’s source file, first import the SQLite
module.
import SQLite
Database connections are established using the Database
class. A database is initialized with a path. SQLite will attempt to create the database file if it does not already exist.
let db = Database("path/to/db.sqlite3")
On iOS, you can create a writable database in your app’s Documents directory.
let path = NSSearchPathForDirectoriesInDomains(
.DocumentDirectory, .UserDomainMask, true
).first as! String
let db = Database("\(path)/db.sqlite3")
On OS X, you can use your app’s Application Support directory:
var path = NSSearchPathForDirectoriesInDomains(
.ApplicationSupportDirectory, .UserDomainMask, true
).first as! String + NSBundle.mainBundle().bundleIdentifier!
// create parent directory iff it doesn’t exist
NSFileManager.defaultManager().createDirectoryAtPath(
path, withIntermediateDirectories: true, attributes: nil, error: nil
)
let db = Database("\(path)/db.sqlite3")
If you bundle a database with your app (i.e., you’ve copied a database file into your Xcode project and added it to your application target), you can establish a read-only connection to it.
let path = NSBundle.mainBundle().pathForResource("db", ofType: "sqlite3")!
let db = Database(path, readonly: true)
Note: Signed applications cannot modify their bundle resources. If you bundle a database file with your app for the purpose of bootstrapping, copy it to a writable location before establishing a connection (see Read-Write Databases, above, for typical, writable locations).
If you omit the path, SQLite.swift will provision an in-memory database.
let db = Database() // equivalent to `Database(":memory:")`
To create a temporary, disk-backed database, pass an empty file name.
let db = Database("")
In-memory databases are automatically deleted when the database connection is closed.
Note: Every database comes equipped with its own serial queue for statement execution and can be safely accessed across threads. Threads that open transactions and savepoints, however, do not block other threads from executing statements within the transaction.
SQLite.swift comes with a typed expression layer that directly maps Swift types to their SQLite counterparts.
Swift Type | SQLite Type |
---|---|
Int64 * |
INTEGER |
Double |
REAL |
String |
TEXT |
nil |
NULL |
SQLite.Blob † |
BLOB |
*While
Int64
is the basic, raw type (to preserve 64-bit integers on 32-bit platforms),Int
andBool
work transparently.†SQLite.swift defines its own
Blob
structure, which safely wraps the underlying bytes.See Custom Types for more information about extending other classes and structures to work with SQLite.swift.
See Executing Arbitrary SQL to forego the typed layer and execute raw SQL, instead.
These expressions (in the form of the structure, Expression
) build on one another and, with a query (Query
), can create and execute SQL statements.
Expressions are generic structures associated with a type (built-in or custom), raw SQL, and (optionally) values to bind to that SQL. Typically, you will only explicitly create expressions to describe your columns, and typically only once per column.
let id = Expression<Int64>("id")
let email = Expression<String>("email")
let balance = Expression<Double>("balance")
let verified = Expression<Bool>("verified")
Use optional generics for expressions that can evaluate to NULL
.
let name = Expression<String?>("name")
Note: The default
Expression
initializer is for quoted identifiers (i.e., column names). To build a literal SQL expression, useinit(literal:)
.
Expressions can be combined with other expressions and types using filter operators and functions (as well as other non-filter operators and functions). These building blocks can create complex SQLite statements.
Queries are structures that reference a database and table name, and can be used to build a variety of statements using expressions. We can create a Query
by subscripting a database connection with a table name.
let users = db["users"]
Assuming the table exists, we can immediately insert, select, update, and delete rows.
We can run CREATE TABLE
statements by calling the create(table:)
function on a database connection. The following is a basic example of SQLite.swift code (using the expressions and query above) and the corresponding SQL it generates.
db.create(table: users) { t in // CREATE TABLE "users" (
t.column(id, primaryKey: true) // "id" INTEGER PRIMARY KEY NOT NULL,
t.column(email, unique: true) // "email" TEXT UNIQUE NOT NULL,
t.column(name) // "name" TEXT
} // )
Note:
Expression<T>
structures (in this case, theid
andNOT NULL
constraints automatically, whileExpression<T?>
structures (name
) do not.
The create(table:)
function has several default parameters we can override.
-
temporary
adds aTEMPORARY
clause to theCREATE TABLE
statement (to create a temporary table that will automatically drop when the database connection closes). Default:false
.db.create(table: users, temporary: true) { t in /* ... */ } // CREATE TEMPORARY TABLE "users" -- ...
-
ifNotExists
adds anIF NOT EXISTS
clause to theCREATE TABLE
statement (which will bail out gracefully if the table already exists). Default:false
.db.create(table: users, ifNotExists: true) { t in /* ... */ } // CREATE TABLE "users" IF NOT EXISTS -- ...
The column
function is used for a single column definition. It takes an expression describing the column name and type, and accepts several parameters that map to various column constraints and clauses.
-
primaryKey
adds aPRIMARY KEY
constraint to a single column.t.column(id, primaryKey: true) // "id" INTEGER PRIMARY KEY NOT NULL t.column(id, primaryKey: .Autoincrement) // "id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL
Note: The
primaryKey
parameter cannot be used alongsidereferences
. If you need to create a column that has a default value and is also a primary and/or foreign key, use theprimaryKey
andforeignKey
functions mentioned under Table Constraints.Primary keys cannot be optional (e.g.,
Expression<Int64?>
).Only an
INTEGER PRIMARY KEY
can take.Autoincrement
. -
unique
adds aUNIQUE
constraint to the column. (See theunique
function under Table Constraints for uniqueness over multiple columns).t.column(email, unique: true) // "email" TEXT UNIQUE NOT NULL
-
check
attaches aCHECK
constraint to a column definition in the form of a boolean expression (Expression<Bool>
). Boolean expressions can be easily built using filter operators and functions. (See also thecheck
function under Table Constraints.)t.column(email, check: like("%@%", email)) // "email" TEXT NOT NULL CHECK ("email" LIKE '%@%')
-
defaultValue
adds aDEFAULT
clause to a column definition and only accepts a value (or expression) matching the column’s type. This value is used if none is explicitly provided during anINSERT
.t.column(name, defaultValue: "Anonymous") // "name" TEXT DEFAULT 'Anonymous'
Note: The
defaultValue
parameter cannot be used alongsideprimaryKey
andreferences
. If you need to create a column that has a default value and is also a primary and/or foreign key, use theprimaryKey
andforeignKey
functions mentioned under Table Constraints. -
collate
adds aCOLLATE
clause toExpression<String>
(andExpression<String?>
) column definitions with a collating sequence defined in theCollation
enumeration.t.column(email, collate: .Nocase) // "email" TEXT NOT NULL COLLATE "NOCASE" t.column(name, collate: .Rtrim) // "name" TEXT COLLATE "RTRIM"
-
references
adds aREFERENCES
clause toExpression<Int64>
(andExpression<Int64?>
) column definitions and accepts a table (Query
) or namespaced column expression. (See theforeignKey
function under Table Constraints for non-integer foreign key support.)t.column(user_id, references: users[id]) // "user_id" INTEGER REFERENCES "users"("id") t.column(user_id, references: users) // "user_id" INTEGER REFERENCES "users" // -- assumes "users" has a PRIMARY KEY
Note: The
references
parameter cannot be used alongsideprimaryKey
anddefaultValue
. If you need to create a column that has a default value and is also a primary and/or foreign key, use theprimaryKey
andforeignKey
functions mentioned under Table Constraints.
Additional constraints may be provided outside the scope of a single column using the following functions.
-
primaryKey
adds aPRIMARY KEY
constraint to the table. Unlike the column constraint, above, it supports all SQLite types, ascending and descending orders, and composite (multiple column) keys.t.primaryKey(email.asc, name) // PRIMARY KEY("email" ASC, "name")
-
unique
adds aUNIQUE
constraint to the table. Unlike the column constraint, above, it supports composite (multiple column) constraints.t.unique(local, domain) // UNIQUE("local", "domain")
-
check
adds aCHECK
constraint to the table in the form of a boolean expression (Expression<Bool>
). Boolean expressions can be easily built using filter operators and functions. (See also thecheck
parameter under Column Constraints.)t.check(balance >= 0) // CHECK ("balance" >= 0.0)
-
foreignKey
adds aFOREIGN KEY
constraint to the table. Unlike thereferences
constraint, above, it supports all SQLite types, and bothON UPDATE
andON DELETE
actions, and composite (multiple column) keys.t.foreignKey(user_id, on: users[id], delete: .SetNull) // FOREIGN KEY("user_id") REFERENCES "users"("id") ON DELETE SET NULL
We can insert rows into a table by calling a query’s insert
function with a list of setters—typically typed column expressions and values (which can also be expressions)—each joined by the <-
operator.
users.insert(email <- "[email protected]", name <- "Alice")
// INSERT INTO "users" ("email", "name") VALUES ('[email protected]', 'Alice')
users.insert(or: .Replace, email <- "[email protected]", name <- "Alice B.")
// INSERT OR REPLACE INTO "users" ("email", "name") VALUES ('[email protected]', 'Alice B.')
The insert
function returns a tuple with an Int64?
representing the inserted row’s ROWID
(or nil
on failure) and the associated Statement
.
let insert = users.insert(email <- "[email protected]")
if let rowid = insert.rowid {
println("inserted id: \(rowid)")
} else if insert.statement.failed {
println("insertion failed: \(insert.statement.reason)")
}
The update
and delete
functions follow similar patterns.
Note: If
insert
is called without any arguments, the statement will run with aDEFAULT VALUES
clause. The table must not have any constraints that aren’t fulfilled by default values.timestamps.insert() // INSERT INTO "timestamps" DEFAULT VALUES
SQLite.swift typically uses the <-
operator to set values during inserts and updates.
views.update(count <- 0)
// UPDATE "views" SET "count" = 0 WHERE ("id" = 1)
There are also a number of convenience setters that take the existing value into account using native Swift operators.
For example, to atomically increment a column, we can use ++
:
views.update(count++) // equivalent to `views.update(count -> count + 1)`
// UPDATE "views" SET "count" = "count" + 1 WHERE ("id" = 1)
To take an amount and “move” it via transaction, we can use -=
and +=
:
let amount = 100.0
db.transaction()
&& alice.update(balance -= amount)
&& betty.update(balance += amount)
&& db.commit() || db.rollback()
// BEGIN DEFERRED TRANSACTION;
// UPDATE "users" SET "balance" = "balance" - 100.0 WHERE ("id" = 1);
// UPDATE "users" SET "balance" = "balance" + 100.0 WHERE ("id" = 2);
// COMMIT TRANSACTION;
Operator | Types |
---|---|
<- |
Value -> Value |
+= |
Number -> Number |
-= |
Number -> Number |
*= |
Number -> Number |
/= |
Number -> Number |
%= |
Int -> Int |
<<= |
Int -> Int |
>>= |
Int -> Int |
&= |
Int -> Int |
` | |
^= |
Int -> Int |
+= |
String -> String |
Operator | Types |
---|---|
++ |
Int -> Int |
-- |
Int -> Int |
Query
structures are SELECT
statements waiting to happen. They execute via iteration and other means of sequence access.
Queries execute lazily upon iteration. Each row is returned as a Row
object, which can be subscripted with a column expression matching one of the columns returned.
for user in users {
println("id: \(user[id]), email: \(user[email]), name: \(user[name])")
// id: 1, email: [email protected], name: Optional("Alice")
}
// SELECT * FROM "users"
Expression<T>
column values are automatically unwrapped (we’ve made a promise to the compiler that they’ll never be NULL
), while Expression<T?>
values remain wrapped.
We can pluck the first row by calling the first
computed property on Query
.
if let user = users.first { /* ... */ } // Row
// SELECT * FROM "users" LIMIT 1
To collect all rows into an array, we can simply wrap the sequence (though this is not always the most memory-efficient idea).
let all = Array(users)
// SELECT * FROM "users"
Query
structures have a number of chainable functions that can be used (with expressions) to add and modify a number of clauses to the underlying statement.
let query = users.select(email) // SELECT "email" FROM "users"
.filter(name != nil) // WHERE "name" IS NOT NULL
.order(email.desc, name) // ORDER BY "email" DESC, "name"
.limit(5, offset: 1) // LIMIT 5 OFFSET 1
By default, Query
objects select every column of the result set (using SELECT *
). We can use the select
function with a list of expressions to return specific columns instead.
for user in users.select(id, email) {
println("id: \(user[id]), email: \(user[email])")
// id: 1, email: [email protected]
}
// SELECT "id", "email" FROM "users"
We can access the results of more complex expressions by holding onto a reference of the expression itself.
let sentence = name + " is " + cast(age) as Expression<String?> + " years old!"
for user in users.select(sentence) {
println(user[sentence])
// Optional("Alice is 30 years old!")
}
// SELECT ((("name" || ' is ') || CAST ("age" AS TEXT)) || ' years old!') FROM "users"
We can join tables using a query’s join
function.
users.join(posts, on: user_id == users[id])
// SELECT * FROM "users" INNER JOIN "posts" ON ("user_id" = "users"."id")
The join
function takes a query object (for the table being joined on), a join condition (on
), and is prefixed with an optional join type (default: .Inner
). Join conditions can be built using filter operators and functions, generally require namespacing, and sometimes require aliasing.
When joining tables, column names can become ambiguous. E.g., both tables may have an id
column.
let query = users.join(posts, on: user_id == id)
// assertion failure: ambiguous column 'id'
We can disambiguate by namespacing id
.
let query = users.join(posts, on: user_id == users[id])
// SELECT * FROM "users" INNER JOIN "posts" ON ("user_id" = "users"."id")
Namespacing is achieved by subscripting a query with a column expression (e.g., users[id]
above becomes users.id
).
Note: We can namespace all of a table’s columns using
*
.let query = users.select(users[*]) // SELECT "users".* FROM "users"
Occasionally, we need to join a table to itself, in which case we must alias the table with another name. We can achieve this using the query’s alias
function.
let managers = users.alias("managers")
let query = users.join(managers, on: managers[id] == users[managerId])
// SELECT * FROM "users"
// INNER JOIN ("users") AS "managers" ON ("managers"."id" = "users"."manager_id")
If query results can have ambiguous column names, row values should be accessed with namespaced column expressions. In the above case, SELECT *
immediately namespaces all columns of the result set.
let user = query.first!
user[id] // fatal error: ambiguous column 'id'
// (please disambiguate: ["users"."id", "managers"."id"])
user[users[id]] // returns "users"."id"
user[managers[id]] // returns "managers"."id"
SQLite.swift filters rows using a query’s filter
function with a boolean expression (Expression<Bool>
).
users.filter(id == 1)
// SELECT * FROM "users" WHERE ("id" = 1)
users.filter(contains([1, 2, 3, 4, 5], id))
// SELECT * FROM "users" WHERE ("id" IN (1, 2, 3, 4, 5))
users.filter(like("%@mac.com", email))
// SELECT * FROM "users" WHERE ("email" LIKE '%@mac.com')
users.filter(verified && lower(name) == "alice")
// SELECT * FROM "users" WHERE ("verified" AND (lower("name") == 'alice'))
users.filter(verified || balance >= 10_000)
// SELECT * FROM "users" WHERE ("verified" OR ("balance" >= 10000.0))
We can build our own boolean expressions by using one of the many filter operators and functions.
Note: SQLite.swift defines
filter
instead ofwhere
becausewhere
is a reserved keyword.
SQLite.swift defines a number of operators for building filtering predicates. Operators and functions work together in a type-safe manner, so attempting to equate or compare different types will prevent compilation.
Swift | Types | SQLite |
---|---|---|
== |
Equatable -> Bool |
= /IS * |
!= |
Equatable -> Bool |
!= /IS NOT * |
> |
Comparable -> Bool |
> |
>= |
Comparable -> Bool |
>= |
< |
Comparable -> Bool |
< |
<= |
Comparable -> Bool |
<= |
~= |
(Interval, Comparable) -> Bool |
BETWEEN |
&& |
Bool -> Bool |
AND |
` | ` |
*When comparing against
nil
, SQLite.swift will useIS
andIS NOT
accordingly.
Swift | Types | SQLite |
---|---|---|
! |
Bool -> Bool |
NOT |
Swift | Types | SQLite |
---|---|---|
like |
String -> Bool |
LIKE |
glob |
String -> Bool |
GLOB |
match |
String -> Bool |
MATCH |
contains |
(Array<T>, T) -> Bool |
IN |
We can pre-sort returned rows using the query’s order
function.
E.g., to return users sorted by email
, then name
, in ascending order:
users.order(email, name)
// SELECT * FROM "users" ORDER BY "email", "name"
The order
function takes a list of column expressions.
Expression
objects have two computed properties to assist sorting: asc
and desc
. These properties append the expression with ASC
and DESC
to mark ascending and descending order respectively.
users.order(email.desc, name.asc)
// SELECT * FROM "users" ORDER BY "email" DESC, "name" ASC
We can limit and skip returned rows using a query’s limit
function (and its optional offset
parameter).
users.limit(5)
// SELECT * FROM "users" LIMIT 5
users.limit(5, offset: 5)
// SELECT * FROM "users" LIMIT 5 OFFSET 5
Query
structures come with a number of functions that quickly return aggregate values from the table. These mirror the core aggregate functions and are executed immediately against the query.
users.count
// SELECT count(*) FROM "users"
Filtered queries will appropriately filter aggregate values.
users.filter(name != nil).count
// SELECT count(*) FROM "users" WHERE "name" IS NOT NULL
-
count
as a computed property (see examples above) returns the total number of rows matching the query.count
as a function takes a column name and returns the total number of rows where that column is notNULL
.users.count(name) // -> Int // SELECT count("name") FROM "users"
-
max
takes a comparable column expression and returns the largest value if any exists.users.max(id) // -> Int64? // SELECT max("id") FROM "users"
-
min
takes a comparable column expression and returns the smallest value if any exists.users.min(id) // -> Int64? // SELECT min("id") FROM "users"
-
average
takes a numeric column expression and returns the average row value (as aDouble
) if any exists.users.average(balance) // -> Double? // SELECT avg("balance") FROM "users"
-
sum
takes a numeric column expression and returns the sum total of all rows if any exist.users.sum(balance) // -> Double? // SELECT sum("balance") FROM "users"
-
total
, likesum
, takes a numeric column expression and returns the sum total of all rows, but in this case always returns aDouble
, and returns0.0
for an empty query.users.total(balance) // -> Double // SELECT total("balance") FROM "users"
Note: Most of the above aggregate functions (except
max
andmin
) can be called with adistinct
parameter to aggregateDISTINCT
values only.users.count(distinct: name) // SELECT count(DISTINCT "name") FROM "users"
We can update a table’s rows by calling a query’s update
function with a list of setters—typically typed column expressions and values (which can also be expressions)—each joined by the <-
operator.
When an unscoped query calls update
, it will update every row in the table.
users.update(email <- "[email protected]")
// UPDATE "users" SET "email" = '[email protected]'
Be sure to scope UPDATE
statements beforehand using the filter
function.
let alice = users.filter(id == 1)
alice.update(email <- "[email protected]")
// UPDATE "users" SET "email" = '[email protected]' WHERE ("id" = 1)
The update
function returns a tuple with an Int?
representing the number of updates (or nil
on failure) and the associated Statement
.
let update = alice.update(email <- "[email protected]")
if let changes = update.changes where changes > 0 {
println("updated alice")
} else if update.statement.failed {
println("update failed: \(update.statement.reason)")
}
We can delete rows from a table by calling a query’s delete
function.
When an unscoped query calls delete
, it will delete every row in the table.
users.delete()
// DELETE FROM "users"
Be sure to scope DELETE
statements beforehand using the filter
function.
let alice = users.filter(id == 1)
alice.delete()
// DELETE FROM "users" WHERE ("id" = 1)
The delete
function returns a tuple with an Int?
representing the number of deletes (or nil
on failure) and the associated Statement
.
let delete = delete.update(email <- "[email protected]")
if let changes = delete.changes where changes > 0 {
println("deleted alice")
} else if delete.statement.failed {
println("delete failed: \(delete.statement.reason)")
}
Using the transaction
and savepoint
functions, we can run a series of statements chained together (using &&
). If a single statement fails, we can short-circuit the series (using ||
) and roll back the changes.
db.transaction()
&& users.insert(email <- "[email protected]")
&& users.insert(email <- "[email protected]", managerId <- db.lastInsertRowid)
&& db.commit() || db.rollback()
Note: Each statement is captured in an auto-closure and won’t execute till the preceding statement succeeds. This is why we can use the
lastInsertRowid
property onDatabase
to reference the previous statement’s insertROWID
.
For more complex transactions and savepoints, block helpers exist. Using a block helper, the former statement can be written (more verbosely) as follows:
db.transaction { txn in
if let rowid = users.insert(email <- "[email protected]").rowid {
if users.insert(email <- "[email protected]", managerId <- db.lastInsertRowid).rowid != nil {
return .Commit
}
}
return .Rollback
}
SQLite.swift comes with several functions (in addition to create(table:)
) for altering a database schema in a type-safe manner.
We can rename a table by calling the rename(table:to:)
function on a database connection.
db.rename(users, to: "users_old")
// ALTER TABLE "users" RENAME TO "users_old"
We can add columns to a table by calling alter
function on a database connection. SQLite.swift enforces the same limited subset of ALTER TABLE
that SQLite supports.
db.alter(table: users, add: suffix)
// ALTER TABLE "users" ADD COLUMN "suffix" TEXT
The alter
function shares several of the same column
function parameters used when creating tables.
-
check
attaches aCHECK
constraint to a column definition in the form of a boolean expression (Expression<Bool>
). (See also thecheck
function under Table Constraints.)let check = contains(["JR", "SR"], suffix) db.alter(table: users, add: suffix, check: check) // ALTER TABLE "users" // ADD COLUMN "suffix" TEXT CHECK ("suffix" IN ('JR', 'SR'))
-
defaultValue
adds aDEFAULT
clause to a column definition and only accepts a value matching the column’s type. This value is used if none is explicitly provided during anINSERT
.db.alter(table: users, add: suffix, defaultValue: "SR") // ALTER TABLE "users" ADD COLUMN "suffix" TEXT DEFAULT 'SR'
Note: Unlike the
CREATE TABLE
constraint, default values may not be expression structures (includingCURRENT_TIME
,CURRENT_DATE
, orCURRENT_TIMESTAMP
). -
collate
adds aCOLLATE
clause toExpression<String>
(andExpression<String?>
) column definitions with a collating sequence defined in theCollation
enumeration.t.alter(table: users, add: email, collate: .Nocase) // ALTER TABLE "users" // ADD COLUMN "email" TEXT NOT NULL COLLATE "NOCASE" t.alter(table: users, add: name, collate: .Rtrim) // ALTER TABLE "users" // ADD COLUMN "name" TEXT COLLATE "RTRIM"
-
references
adds aREFERENCES
clause toInt64
(andInt64?
) column definitions and accepts a table or namespaced column expression. (See theforeignKey
function under Table Constraints for non-integer foreign key support.)db.alter(table: posts, add: user_id, references: users[id]) // ALTER TABLE "posts" ADD COLUMN "user_id" INTEGER REFERENCES "users"("id") db.alter(table: posts, add: user_id, references: users) // ALTER TABLE "posts" ADD COLUMN "user_id" INTEGER REFERENCES "users" // -- assumes "users" has a PRIMARY KEY
We can run CREATE INDEX
statements by calling the create(index:)
function on a database connection.
db.create(index: users, on: email)
// CREATE INDEX "index_users_on_email" ON "users" ("email")
The index name is generated automatically based on the table and column names.
The create(index:)
function has a couple default parameters we can override.
-
unique
adds aUNIQUE
constraint to the index. Default:false
.db.create(index: users, on: email, unique: true) // CREATE UNIQUE INDEX "index_users_on_email" ON "users" ("email")
-
ifNotExists
adds anIF NOT EXISTS
clause to theCREATE TABLE
statement (which will bail out gracefully if the table already exists). Default:false
.db.create(index: users, on: email, ifNotExists: true) // CREATE INDEX IF NOT EXISTS "index_users_on_email" ON "users" ("email")
We can run DROP INDEX
statements by calling the drop(index:)
function on a database connection.
db.drop(index: users, on: email)
// DROP INDEX "index_users_on_email"
The drop(index:)
function has one additional parameter, ifExists
, which (when true
) adds an IF EXISTS
clause to the statement.
db.drop(index: users, on: email, ifExists: true)
// DROP INDEX IF EXISTS "index_users_on_email"
We can run DROP TABLE
statements by calling the drop(table:)
function on a database connection.
db.drop(table: users)
// DROP TABLE "users"
The drop(table:)
function has one additional parameter, ifExists
, which (when true
) adds an IF EXISTS
clause to the statement.
db.drop(table: users, ifExists: true)
// DROP TABLE IF EXISTS "users"
SQLite.swift provides a convenience property on Database
to query and set the PRAGMA user_version
. This is a great way to manage your schema’s version over migrations.
if db.userVersion == 0 {
// handle first migration
db.userVersion = 1
}
if db.userVersion == 1 {
// handle second migration
db.userVersion = 2
}
SQLite.swift supports serializing and deserializing any custom type as long as it conforms to the Value
protocol.
protocol Value { typealias Datatype: Binding class var declaredDatatype: String { get } class func fromDatatypeValue(datatypeValue: Datatype) -> Self var datatypeValue: Datatype { get } }
The Datatype
must be one of the basic Swift types that values are bridged through before serialization and deserialization (see Building Type-Safe SQL for a list of types).
Note:
Binding
is a protocol that SQLite.swift uses internally to directly map SQLite types to Swift types. Do not conform custom types to theBinding
protocol.
Once extended, the type can be used almost wherever typed expressions can be.
In SQLite, DATETIME
columns can be treated as strings or numbers, so we can transparently bridge NSDate
objects through Swift’s String
or Int
types.
To serialize NSDate
objects as TEXT
values (in ISO 8601), we’ll use String
.
extension NSDate: Value {
class var declaredDatatype: String {
return String.declaredDatatype
}
class func fromDatatypeValue(stringValue: String) -> NSDate {
return SQLDateFormatter.dateFromString(stringValue)!
}
var datatypeValue: String {
return SQLDateFormatter.stringFromDate(self)
}
}
let SQLDateFormatter: NSDateFormatter = {
let formatter = NSDateFormatter()
formatter.dateFormat = "yyyy-MM-dd'T'HH:mm:ss.SSS"
formatter.locale = NSLocale(localeIdentifier: "en_US_POSIX")
formatter.timeZone = NSTimeZone(forSecondsFromGMT: 0)
return formatter
}()
We can also treat them as INTEGER
values using Int
.
extension NSDate: Value {
class var declaredDatatype: String {
return Int.declaredDatatype
}
class func fromDatatypeValue(intValue: Int) -> Self {
return self(timeIntervalSince1970: NSTimeInterval(intValue))
}
var datatypeValue: Int {
return Int(timeIntervalSince1970)
}
}
Note: SQLite’s
CURRENT_DATE
,CURRENT_TIME
, andCURRENT_TIMESTAMP
helpers returnTEXT
values. Because of this (and the fact that Unix time is far less human-readable when we’re faced with the raw data), we recommend using theTEXT
extension.
Once defined, we can use these types directly in SQLite statements.
let published_at = Expression<NSDate>("published_at")
let published = posts.filter(published_at <= NSDate())
// extension where Datatype == String:
// SELECT * FROM "posts" WHERE "published_at" <= '2014-11-18 12:45:30'
// extension where Datatype == Int:
// SELECT * FROM "posts" WHERE "published_at" <= 1416314730
Any object that can be encoded and decoded can be stored as a blob of data in SQL.
We can create an NSData
bridge rather trivially.
extension NSData: Value {
class var declaredDatatype: String {
return Blob.declaredDatatype
}
class func fromDatatypeValue(blobValue: Blob) -> Self {
return self(bytes: blobValue.bytes, length: blobValue.length)
}
var datatypeValue: Blob {
return Blob(bytes: bytes, length: length)
}
}
We can bridge any type that can be initialized from and encoded to NSData
.
// assumes NSData conformance, above
extension UIImage: Value {
class var declaredDatatype: String {
return NSData.declaredDatatype
}
class func fromDatatypeValue(blobValue: Blob) -> Self {
return self(data: NSData.fromDatatypeValue(blobValue))
}
var datatypeValue: Blob {
return UIImagePNGRepresentation(self).datatypeValue
}
}
Note: See the Archives and Serializations Programming Guide for more information on encoding and decoding custom types.
Swift does not currently support generic subscripting, which means we cannot, by default, subscript Expressions with custom types to:
-
Namespace expressions. Use the
namespace
function, instead:let avatar = Expression<UIImage?>("avatar") users[avatar] // fails to compile users.namespace(avatar) // "users"."avatar"
-
Access column data. Use the
get
function, instead:let user = users.first! user[avatar] // fails to compile user.get(avatar) // UIImage?
We can, of course, write extensions, but they’re rather wordy.
extension Query {
subscript(column: Expression<UIImage>) -> Expression<UIImage> {
return namespace(column)
}
subscript(column: Expression<UIImage?>) -> Expression<UIImage?> {
return namespace(column)
}
}
extension Row {
subscript(column: Expression<UIImage>) -> UIImage {
return get(column)
}
subscript(column: Expression<UIImage?>) -> UIImage? {
return get(column)
}
}
In addition to filter operators, SQLite.swift defines a number of operators that can modify expression values with arithmetic, bitwise operations, and concatenation.
Swift | Types | SQLite |
---|---|---|
+ |
Number -> Number |
+ |
- |
Number -> Number |
- |
* |
Number -> Number |
* |
/ |
Number -> Number |
/ |
% |
Int -> Int |
% |
<< |
Int -> Int |
<< |
>> |
Int -> Int |
>> |
& |
Int -> Int |
& |
` | ` | Int -> Int |
+ |
String -> String |
` |
Note: SQLite.swift also defines a bitwise XOR operator,
^
, which expands the expressionlhs ^ rhs
to~(lhs & rhs) & (lhs | rhs)
.
Swift | Types | SQLite |
---|---|---|
~ |
Int -> Int |
~ |
- |
Number -> Number |
- |
Many of SQLite’s core functions have been surfaced in and type-audited for SQLite.swift.
Note: SQLite.swift aliases the
??
operator to theifnull
function.name ?? email // ifnull("name", "email")
Most of SQLite’s aggregate functions have been surfaced in and type-audited for SQLite.swift.
We can create custom SQL functions by calling create(function:)
on a database connection.
For example, to give queries access to MobileCoreServices.UTTypeConformsTo
, we can write the following:
import MobileCoreServices
let typeConformsTo: (String, Expression<String>) -> Expression<Bool> = (
db.create(function: "typeConformsTo", deterministic: true) { UTI, conformsToUTI in
return UTTypeConformsTo(UTI, conformsToUTI) != 0
}
)
Note: The optional
deterministic
parameter is an optimization that causes the function to be created withSQLITE_DETERMINISTIC
.
Note typeConformsTo
’s signature:
(Expression<String>, String) -> Expression<Bool>
Because of this, create(function:)
expects a block with the following signature:
(String, String) -> Bool
Once assigned, the closure can be called wherever boolean expressions are accepted.
let attachments = db["attachments"]
let UTI = Expression<String>("UTI")
attachments.filter(typeConformsTo(UTI, kUTTypeImage))
// SELECT * FROM "attachments" WHERE "typeConformsTo"("UTI", 'public.image')
Note: The return type of a function must be a core SQL type or conform to
Value
.
We can create loosely-typed functions by handling an array of raw arguments, instead.
db.create(function: "typeConformsTo", deterministic: true) { args in
if let UTI = args[0] as? String, conformsToUTI = args[1] as? String {
return Int(UTTypeConformsTo(UTI, conformsToUTI))
}
return nil
}
Creating a loosely-typed function cannot return a closure and instead must be wrapped manually or executed using raw SQL.
let stmt = db.prepare("SELECT * FROM attachments WHERE typeConformsTo(UTI, ?)")
for row in stmt.bind(kUTTypeImage) { /* ... */ }
We can create custom collating sequences by calling create(collation:)
on a database connection.
db.create(collation: "NODIACRITIC") { lhs, rhs in
return lhs.compare(rhs, options: .DiacriticInsensitiveSearch)
}
We can reference a custom collation using the Custom
member of the Collation
enumeration.
restaurants.order(collate(.Custom("NODIACRITIC"), name))
// SELECT * FROM "restaurants" ORDER BY "name" COLLATE "NODIACRITIC"
We can create a virtual table using the FTS4 module by calling create(vtable:)
on a database connection.
let emails = db["emails"]
let subject = Expression<String>("subject")
let body = Expression<String>("body")
db.create(vtable: emails, using: fts4(subject, body))
// CREATE VIRTUAL TABLE "emails" USING fts4("subject", "body")
We can specify a tokenizer using the tokenize
parameter.
db.create(vtable: emails, using: fts4([subject, body], tokenize: .Porter))
// CREATE VIRTUAL TABLE "emails" USING fts4("subject", "body", tokenize=porter)
Once we insert a few rows, we can search using the match
function, which takes a table or column as its first argument and a query string as its second.
emails.insert(
subject <- "Just Checking In",
body <- "Hey, I was just wondering...did you get my last email?"
)!
emails.filter(match(emails, "wonder*"))
// SELECT * FROM "emails" WHERE "emails" MATCH 'wonder*'
emails.filter(match(subject, "Re:*"))
// SELECT * FROM "emails" WHERE "subject" MATCH 'Re:*'
Though we recommend you stick with SQLite.swift’s type-safe system whenever possible, it is possible to simply and safely prepare and execute raw SQL statements via a Database
connection using the following functions.
-
execute
runs an arbitrary number of SQL statements as a convenience.db.execute( "BEGIN TRANSACTION;" + "CREATE TABLE users (" + "id INTEGER PRIMARY KEY NOT NULL," + "email TEXT UNIQUE NOT NULL," + "name TEXT" + ");" + "CREATE TABLE posts (" + "id INTEGER PRIMARY KEY NOT NULL," + "title TEXT NOT NULL," + "body TEXT NOT NULL," + "published_at DATETIME" + ");" + "PRAGMA user_version = 1;" + "COMMIT TRANSACTION;" )
-
prepare
prepares a singleStatement
object from a SQL string, optionally binds values to it (using the statement’sbind
function), and returns the statement for deferred execution.let stmt = db.prepare("INSERT INTO users (email) VALUES (?)")
Once prepared, statements may be executed using
run
, binding any unbound parameters.stmt.run("[email protected]") db.changes // -> {Some 1}
Statements with results may be iterated over.
let stmt = db.prepare("SELECT id, email FROM users") for row in stmt { println("id: \(row[0]), email: \(row[1])") // id: Optional(1), email: Optional("[email protected]") }
-
run
prepares a singleStatement
object from a SQL string, optionally binds values to it (using the statement’sbind
function), executes, and returns the statement.db.run("INSERT INTO users (email) VALUES (?)", "[email protected]")
-
scalar
prepares a singleStatement
object from a SQL string, optionally binds values to it (using the statement’sbind
function), executes, and returns the first value of the first row.db.scalar("SELECT count(*) FROM users") as! Int64
Statements also have a
scalar
function, which can optionally re-bind values at execution.let stmt = db.prepare("SELECT count (*) FROM users") stmt.scalar() as! Int64
We can log SQL using the database’s trace
function.
#if DEBUG
db.trace(println)
#endif