-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessing.py
228 lines (174 loc) · 6.63 KB
/
processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""Process ERA5 .grb files
"""
import numpy as np
import pygrib
import pandas as pd
from scipy import interpolate
import utils
class Era5(object):
"""
"""
def __init__(self, grb_file, lat_range=None, lon_range=None,
site=None, var_names_short=None, ww3=False):
self.fn = grb_file
self.site = site
if self.site is not None:
self.lat_range = utils.region_box[self.site]['lat']
self.lon_range = utils.region_box[self.site]['lon']
else:
self.lat_range = lat_range
self.lon_range = lon_range
self.site = site
self.grb = pygrib.open(grb_file)
# Analysis date
self.anal_date = self.grb.read(1)[0].analDate
self.reset_grb()
# If ww3 is False; read ww3 mask and lat, lon from
# saved ww3 file
if ww3:
in_ww3_grb = self.grb
else:
in_ww3_grb = None
# Target lat/lon
ww3lat, ww3lon = utils.ww3_grid(in_ww3_grb)
self.target_lat, self.target_lon = _slice_latlon(ww3lat, ww3lon,
self.lat_range, self.lon_range)
# Target mask
self.mask = utils.ww3_mask(self.lat_range, self.lon_range,
in_ww3_grb)
# Number of non-masked output grid points
self.gridpoints = len(self.target_lat[~self.mask])
# Variable dictionary
if var_names_short is None:
self.var_names_short = utils.var_names_short
else:
self.var_names_short = var_names_short
self.vardict = _var_df_dict(self.var_names_short, self.gridpoints)
def format(self, method="linear"):
"""
"""
self.reset_grb()
self.method = method
# Iterate through variables in grb file
for gm in self.grb:
# Get full name and short name
# short name is the variable dict key
name = gm.name
sname = gm.shortName
# Get lat,lon
lat, lon = gm.latlons()
# Slice region
lat, lon = _slice_latlon(lat, lon, self.lat_range, self.lon_range)
var_data = _region_data(gm, self.lat_range, self.lon_range)
# Interpolate to target lat and lon
interp_data = _interp_ww3(var_data, lon, lat,
self.target_lon, self.target_lat, self.method)
# Get non-masked data
interp_data = interp_data[~self.mask]
dt = gm.analDate
# Insert in variable dictionary dataframe
if len(self.vardict[sname]["name"]) != 0:
self.vardict[sname]["name"] = name
df_len = len(self.vardict[sname]["df"])
df = self.vardict[sname]["df"]
df.loc[df_len] = interp_data
self.vardict[sname]["index"].append(dt)
df.index = self.vardict[sname]["index"]
def reset_grb(self):
"""
Reset the pygrib iterator
"""
self.grb.seek(0)
def create_df(self):
"""
Merge dataframes in self.vardict
"""
df_list = [self.vardict[v]["df"] for v in self.var_names_short]
self.df = pd.concat(df_list, axis=1, sort=False)
class Ww3(Era5):
"""
"""
def __init__(self, ww3_file, lat_range=None, lon_range=None,
site=None, var_names_short=None):
if var_names_short is None:
var_names_short = utils.ww3_var_names_short
super(Ww3, self).__init__(ww3_file, lat_range, lon_range,
site, var_names_short)
def format(self):
"""
"""
self.reset_grb()
# Iterate through variables in grb file
for gm in self.grb:
# Get full name and short name
# short name is the variable dict key
name = gm.name
sname = gm.shortName
# Read if variable is in vardict keys
if sname in self.vardict.keys():
# Read data within lat/lon range
var_data = _region_data(gm, self.lat_range, self.lon_range)
# Get non-masked data
var_data = var_data[~self.mask]
# Insert in variable dictiontary dataframe
dt = gm.validDate
if len(self.vardict[sname]["name"]) != 0:
self.vardict[sname]["name"] = name
df_len = len(self.vardict[sname]["df"])
df = self.vardict[sname]["df"]
df.loc[df_len] = var_data
self.vardict[sname]["index"].append(dt)
df.index = self.vardict[sname]["index"]
def _slice_latlon(lat, lon, lat_range, lon_range):
"""
Provide grid of lat/lon and extract values within
lat/lon range
"""
mask = (lat >= lat_range[0]) & (lat <= lat_range[1]) & \
(lon >= lon_range[0]) & (lon <= lon_range[1])
dim1 = np.any(mask, axis=1).sum()
dim2 = np.any(mask, axis=0).sum()
lat_extract = lat[mask].reshape(dim1, dim2)
lon_extract = lon[mask].reshape(dim1, dim2)
return lat_extract, lon_extract
def _region_data(gribmessage, lat_range, lon_range):
"""
Extract data from pygrib gribmessage object
for lat/lon region
"""
return gribmessage.data(lat1=lat_range[0], lat2=lat_range[1],
lon1=lon_range[0], lon2=lon_range[1])[0]
def _var_col_names(n, var_name):
return ["{}_p{}".format(var_name, i) for i in range(1, n + 1)]
def _var_df_dict(var_names, n):
var_dict = dict()
for vn in var_names:
col_names = _var_col_names(n, vn)
var_dict[vn] = {
"name": "",
"df": pd.DataFrame(columns=col_names),
"index": list()
}
return var_dict
def _interp_ww3(variable_data, lon, lat,
target_lon, target_lat, method='linear'):
"""
2d Interpolate variable data located at lon, lat to
target_lon and target_lat
"""
# Most data will be in a numpy MaskedArray but some,
# such as wind component, will not
if type(variable_data) == np.ma.core.MaskedArray:
in_values = variable_data[~variable_data.mask].data
in_lon = lon[~variable_data.mask].flatten()
in_lat = lat[~variable_data.mask].flatten()
else:
in_values = variable_data.flatten()
in_lon = lon.flatten()
in_lat = lat.flatten()
in_points = np.zeros(shape=(len(in_lon), 2))
in_points[:, 0] = in_lon
in_points[:, 1] = in_lat
interp_data = interpolate.griddata(
in_points, in_values, (target_lon, target_lat), method=method)
return interp_data