-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathOpen_Data_Enlaces.Rmd
560 lines (545 loc) · 50.9 KB
/
Open_Data_Enlaces.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
---
title: "Open Data"
author: "by [Santiago Mota](https://www.linkedin.com/in/santiagomota/)"
mail: "[email protected]"
linkedin: "santiagomota"
twitter: "mota_santiago"
github: "santiagomota"
date: "`r Sys.Date()`"
# logo: "./figs/logo3.png"
license: by-nc-sa
urlcolor: blue
always_allow_html: true
output:
word_document: default
pdf_document: default
html_document:
theme: cosmo # "default", "cerulean", "journal", "flatly", "readable", "spacelab", "united", "cosmo", "lumen", "paper", "sandstone", "simplex", "yeti"
highlight: tango # "default", "tango", "pygments", "kate", "monochrome", "espresso", "zenburn", "haddock", "textmate"
toc: true
toc_float: true
code_folding: show
always_allow_html: true
includes:
after_body: footer_V2.html
---
```{r}
#| include: false
#| echo: false
# Para obligar a que salgan los iconos en documentos Rmarkdown
htmltools::tagList(rmarkdown::html_dependency_font_awesome())
```
Este fichero es copia de uno alojado en Github, en este [link](https://github.com/santiagomota/Open_Data) y que se actualiza periódicamente.
```{r}
#| eval: false
# Creo el link con:
# usethis::create_download_url("https://github.com/santiagomota/Open_Data")
# Si me quiero bajar el repositorio completo en el directorio actual
usethis::use_course(
"https://github.com/santiagomota/Open_Data/zipball/HEAD", destdir = ".")
```
## Fuentes de datos abiertos y APIs
- [20 Awesome Websites For Collecting Big Data](https://datafloq.com/read/20-awesome-websites-for-collecting-big-data/2737?utm_source=Datafloq%20newsletter&utm_campaign=979b1fada5-EMAIL_CAMPAIGN_2017_03_13&utm_medium=email&utm_term=0_655692fdfd-979b1fada5-90449429)
- [25 Open Datasets for Deep Learning Every Data Scientist Must Work With](https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/?utm_source=linkedin.com&utm_medium=social)
- [25 Open Datasets for Deep Learning Every Data Scientist Must Work With](https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/)
- [25 Satellite Maps To See Earth in New Ways](https://gisgeography.com/satellite-maps/)
- [30 Amazing (And Free) Big Data And AI Public Data Sources For 2018](https://www.linkedin.com/pulse/30-amazing-free-big-data-ai-public-sources-2018-bernard-marr/?trackingId=nkTXcNLieYPDBqZuB3KIsw%3D%3D&lipi=urn%3Ali%3Apage%3Ad_flagship3_feed%3B9KuSD9KfQ6ie%2BALso3gwvw%3D%3D&licu=urn%3Ali%3Acontrol%3Ad_flagship3_feed-object)
- [46 museos y bibliotecas que han digitalizado todo su conocimiento y lo ofrecen gratis en internet](http://www.xataka.com/otros/46-museos-y-bibliotecas-que-han-digitalizado-todo-su-conocimiento-humano)
- [AENA - Estadísticas de tráfico aéreo](https://www.aena.es/es/estadisticas/inicio.html)
- [Agencia Tributaria. Estadísticas](https://sede.agenciatributaria.gob.es/Sede/estadisticas.html)
- [AI for Copernicus - a data repository by CALLISTO](https://github.com/Agri-Hub/Callisto-Dataset-Collection)
- [AI4SmallFarms: A Data Set for Crop Field Delineation in Southeast Asian Smallholder Farms](https://phys-techsciences.datastations.nl/dataset.xhtml?persistentId=doi:10.17026/dans-xy6-ngg6)
- [AID: A Benchmark Dataset for Performance Evaluation of Aerial Scene Classification](https://captain-whu.github.io/AID/)
- [Alaska Satellite Facility](https://asf.alaska.edu/getstarted/)
- [Amazon product data 2014](http://jmcauley.ucsd.edu/data/amazon/)
- [Amazon product data 2018](https://nijianmo.github.io/amazon/index.html)
- [Análisis de 1.100 millones de trayectos de taxis y uber en NYC](https://github.com/toddwschneider/nyc-taxi-data)
- [API de Facebook](https://developers.facebook.com/docs/graph-api)
- [API de GitHub](https://developer.github.com/v3/)
- [Argo Floats](https://argo.ucsd.edu/) - Global ocean observations of temperature, salinity, and pressure.
- [API TomTom. Tráfico en ciudades](http://developer.tomtom.com/products/onlinenavigation/onlinetraffic/onlinetrafficflow)
- [Armed Conflict Location & Event Data Project (ACLED)](https://acleddata.com/)
- [ASTER Global DEM (GDEM)](https://lpdaac.usgs.gov/products/astgtmv003/) - ASTER Global Digital Elevation Model 1 arc second
- [ArcticDEM](https://www.pgc.umn.edu/data/arcticdem/) - High-resolution DEM for the Arctic region
- [Awesome Geospatial](https://github.com/sacridini/Awesome-Geospatial)
- [Awesome Public Datasets 1](https://github.com/dipanjanS/awesome-public-datasets)
- [Awesome Public Datasets 2](https://github.com/awesomedata/awesome-public-datasets)
- [Awesome Sentinel. Copernicus Sentinel Satellites resources](https://github.com/Fernerkundung/awesome-sentinel)
- [awesome-gee-community-datasets](https://github.com/samapriya/awesome-gee-community-datasets)
- [AWS Data Exchange](https://docs.aws.amazon.com/data-exchange/)
- [AWS Datasets](https://registry.opendata.aws/)
- [AWS Open Data Geo](https://github.com/opengeos/aws-open-data-geo)
- [AWS Open Data](https://github.com/opengeos/aws-open-data)
- [Ayuntamiento de Madrid. Censo de locales, sus actividades y terrazas de hostelería y restauración](https://datos.gob.es/es/catalogo/l01280796-censo-de-locales-sus-actividades-y-terrazas-de-hosteleria-y-restauracion-historico1)
- [Berkeley Earth](https://berkeleyearth.org/data/) - Global land temperature and air pollution datasets.
- [Blog. 100 recursos sobre Big Data y Data Science](https://www.todobi.com/mas-de-100-recursos-sobre-big-data-y/)
- [British Ordnance Survey Data Hub](https://osdatahub.os.uk/)
- [BUILDING OUTLINE EXTRACTION OF ENSCHEDE, THE NETHERLANDS USING AERIAL IMAGES AND DIGITAL SURFACE MODELS](https://easy.dans.knaw.nl/ui/datasets/id/easy-dataset:257588)
- [CaixaBank Research](https://www.caixabankresearch.com/es)
- [CGIAR-CSI SRTM](https://csidotinfo.wordpress.com/data/srtm-90m-digital-elevation-database-v4-1/) - SRTM 90m Digital Elevation Database v4.1
- [Canada Open Government Portal](https://open.canada.ca/data/en/dataset?q=education)
- [Center for Applied Internet Data Analysis](https://www.caida.org/data/overview/)
- [Center for Disease Control](https://wonder.cdc.gov/)
- [CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations](https://www.chc.ucsb.edu/data/chirps) - High-resolution precipitation data.
- [CIS. Centro de Investigaciones Sociológicas](https://www.cis.es/inicio)
- [Climate Data Online](https://www.ncdc.noaa.gov/cdo-web/)
- [Climate Change Knowledge Porta](https://climateknowledgeportal.worldbank.org/) - Country-specific climate risks, data, and projections.
- [Climate TRACE](https://climatetrace.org/data)
- [Cómo los datos abiertos pueden ayudar en la crisis de los refugiados](https://datos.gob.es/es/blog/como-los-datos-abiertos-pueden-ayudar-en-la-crisis-de-los-refugiados?utm_source=newsletter&utm_medium=email&utm_campaign=Datos-en-tiempo-real-open-access-y-mucho-ms-en-datosgobes)
- [Copernicus Atmosphere Monitoring Service (CAMS) Global Near-Real-Time](https://developers.google.com/earth-engine/datasets/catalog/ECMWF_CAMS_NRT)
- [Copernicus Open Access Hub](https://scihub.copernicus.eu/dhus/#/home)
- [Copernicus DEM](https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model) - European Digital Elevation Model (EU-DEM)
- [Copernicus Marine Environment Monitoring Service (CMEMS)](https://marine.copernicus.eu/) - Ocean monitoring for sea surface temperature, sea level, and salinity.
- [CRAN Task View OpenData](https://github.com/ropensci/opendata)
- [Crimen en UK](https://data.police.uk/)
- [DANS Data Station Physical and Technical Sciences](https://phys-techsciences.datastations.nl/)
- [Data Derived from OpenStreetMap for Download](https://osmdata.openstreetmap.de/)
- [Data Kicks](https://data-kicks.com/index.php/blog/)
- [Data on CO2 and Greenhouse Gas Emissions by Our World in Data](https://github.com/owid/co2-data/tree/master)
- [Data World](https://data.world/)
- [Datasets de ejemplo de IBM Watson Analytics](https://www.ibm.com/communities/analytics/watson-analytics-blog/guide-to-sample-datasets/)
- [Datasets de Quandl](https://www.quandl.com/search?query=)
- [Dataset4EO](https://github.com/EarthNets/Dataset4EO)
- [Datos abiertos Ayuntamiento de Valencia](https://www.valencia.es/cas/ayuntamiento/gobierno-abierto)
- [Datos abiertos de la Generalitat de Cataluña](http://dadesobertes.gencat.cat/es/)
- [Datos abiertos de la Unión Europea](https://data.europa.eu/es)
- [Datos abiertos de Santander](http://datos.santander.es/)
- [Datos abiertos del Ayuntamiento de Madrid](http://datos.madrid.es/)
- [Datos Abiertos del Consorcio Regional de Transportes de Madrid](https://datos.crtm.es/)
- [Datos abiertos del gobierno de España](http://datos.gob.es/)
- [Datos abiertos Junta de Andalucía](http://www.juntadeandalucia.es/datosabiertos/portal.html)
- [Datos de la Eurocopa 2024](https://github.com/Jelagmil/Euro2024_data)
- [Datos de todos los vuelos en USA entre 1987 y 2008 (datos originales)](http://stat-computing.org/dataexpo/2009/the-data.html)
- [Datos de todos los vuelos en USA entre 1987 y 2008 (otra fuente y ejemplos de uso en H2O). 120G](https://github.com/h2oai/h2o-2/wiki/Hacking-Airline-DataSet-with-H2O)
- [Datos estadísticos DGT](https://sedeapl.dgt.gob.es/WEB_IEST_CONSULTA/)
- [Datosclima. Base de datos meteo](http://datosclima.es/Aemet2013/DescargaDatos.html)
- [DH Network](http://opendhn.dhnetwork.opendata.arcgis.com/)
- [Digital Earth Africa (DE Africa) Map](https://www.digitalearthafrica.org/platform-resources/platform)
- [Dirección General de Tráfico (DGT)](https://sedeapl.dgt.gob.es/WEB_IEST_CONSULTA/inicio.faces)
- [Dynamic World V1 Land Use](https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1)
- [EarthEnv-DEM90 digital elevation model](https://www.earthenv.org/DEM) - Global DEM created from multiple datasets
- [EarthView dataset](https://huggingface.co/datasets/satellogic/EarthView)
- [ECMWF ERA5](https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) - Hourly reanalysis climate data (temperature, precipitation, wind, etc.).
- [EM-DAT - The international disaster database](https://www.emdat.be/)
- [EDGAR - Emissions Database for Global Atmospheric Research](https://edgar.jrc.ec.europa.eu/emissions_data_and_maps)
- [EnMAP. The German Spaceborne Imaging Spectrometer Mission](https://www.enmap.org/)
- [El planeta Tierra en AWS](https://aws.amazon.com/es/earth/)
- [ERA DATASET. Dataset and Deep Learning Benchmark for Event Recognition in Aerial Videos](https://lcmou.github.io/ERA_Dataset/)
- [ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service](https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY)
- [ESA OpenSR - Robust, accountable super-resolution for Sentinel-2 and beyond](https://isp.uv.es/opensr/)
- [ESA Third Party Missions (TPM)](https://earth.esa.int/eogateway/missions/third-party-missions)
- [ESA WorldCover 2021. Global land cover product at 10 m for 2021 based on Sentinel-1 and 2 data](https://worldcover2021.esa.int/)
- [España. Estadísticas de mercado de trabajo](https://www.mites.gob.es/es/estadisticas/mercado_trabajo/index.htm)
- [España. Inmigración. Estadísticas](https://www.inclusion.gob.es/web/opi/estadisticas)
- [España. Seguridad Social. Estadísticas](https://www.seg-social.es/wps/portal/wss/internet/EstadisticasPresupuestosEstudios/Estadisticas)
- [Esri Open Data Hub](https://hub.arcgis.com/search)
- [European Banking Authority (EBA)](https://www.eba.europa.eu/risk-and-data-analysis)
- [European Data Portal](https://www.europeandataportal.eu/)
- [FAO Map Catalog](http://www.fao.org/geonetwork)
- [FAO's Global Information System on Water and Agriculture](https://www.fao.org/aquastat/en/geospatial-information/wapor)
- [FBREF - Estadísticas e Historia del Fútbol](https://fbref.com/es/)
- [Fields of The World (FTW)](https://beta.source.coop/repositories/kerner-lab/fields-of-the-world/description/)
- [Fivethirtyeight](https://data.fivethirtyeight.com/)
- [FLUXNET](https://fluxnet.org/) - Data from flux towers for carbon, water, and energy exchange monitoring.
- [Fondo Monetario Internacional](http://www.imf.org/en/data)
- [Free GIS Data](http://freegisdata.rtwilson.com/)
- [Freshwater Ecoregions of the World](https://www.worldwildlife.org/pages/freshwater-ecoregions-of-the-world--2)
- [Fuentes de datos espaciales (Diva-GIS)](https://diva-gis.org/)
- [Functional Map of the World (fMoW) Dataset](https://github.com/fMoW/dataset)
- [Gapminder](https://www.gapminder.org/data/)
- [gee-community-catalog](https://gee-community-catalog.org/)
- [geoBoundaries](https://www.geoboundaries.org/)
- [geodata.state.gov](https://geodata.state.gov/geonetwork/srv/spa/catalog.search#/home)
- [GEBCO (General Bathymetric Chart of the Oceans)](https://www.gebco.net/) - Bathymetric DEM for ocean floors
- [Geonames Cities with population > 5000](https://documentation-resources.opendatasoft.com/explore/dataset/doc-geonames-cities-5000/table/)
- [Geoportal Registradores](https://geoportal.registradores.org/)
- [Geospatial Data Catalogs](https://github.com/opengeos/geospatial-data-catalogs)
- [Geospatial Data Abstraction Library (GDAL) links](https://gdal.org/en/stable/) - Provides links to raster datasets from various organizations.
- [GHSL - Global Human Settlement Layer](https://human-settlement.emergency.copernicus.eu/download.php?ds=bu)
- [Global Forest Change 2000-2023](https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html)
- [Global Flood Database v1 (2000-2018)](https://developers.google.com/earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1)
- [Global Health Observatory (GHO) API](https://www.who.int/data/gho/info/gho-odata-api)
- GLOPOP-S. A global dataset of 7 billion individuals with socio-economic characteristics (sintetic) [Data](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KJC3RH) [Github](https://github.com/VU-IVM/GLOPOP-S) [Paper](https://www.nature.com/articles/s41597-024-03864-2)
- [Global Historical Climatology Network (GHCN)](https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily) - Weather station data for precipitation, temperature, and more.
- [Global Land Cover Facility](https://www.un-spider.org/links-and-resources/data-sources/global-land-cover-facility-university-maryland-nasa-gofc-gold) - Land cover and vegetation datasets.
- [Gobierno Estados Unidos](http://www.data.gov/)
- [Google Books Ngram Viewe](http://storage.googleapis.com/books/ngrams/books/datasetsv2.html)
- [Google Cloud Vision API](https://cloud.google.com/vision/)
- [Google Datset Search](https://datasetsearch.research.google.com/)
- [Google Earth Engine Catalog](https://github.com/opengeos/Earth-Engine-Catalog)
- [Google finanzas](http://www.google.com/finance/)
- [Google Open Buildings](https://sites.research.google/gr/open-buildings/)
- [Google Patents Public Data](https://console.cloud.google.com/marketplace/product/google_patents_public_datasets/google-patents-public-data)
- [Google Public Data](https://www.google.com/publicdata/directory)
- [Google-Microsoft-OSM Open Buildings - combined by VIDA](https://beta.source.coop/repositories/vida/google-microsoft-osm-open-buildings/description/)
- [Helsinki Open Data](http://www.hri.fi/en/)
- [Hugging Face Datasets](https://huggingface.co/datasets)
- [HydroRIVERS](https://www.hydrosheds.org/products/hydrorivers)
- [Idealista ux&tech](https://www.idealista.com/labs/blog/)
- [idealista18 - 2018 real estate listings in Spain. 3 cities](https://github.com/paezha/idealista18)
- [ImageNet database](http://www.image-net.org/)
- [Infraestructura de Datos Espaciales de España](https://idee.es/web/idee/inicio)
- [Infraestructura de Datos Espaciales de la Comunidad de Madrid](http://www.madrid.org/cartografia/idem/html/web/index.htm)
- [IPUMS GIS Boundary Files](https://international.ipums.org/international/gis.shtml)
- [ISCGM Global Map](https://globalmaps.github.io/)
- [ISIMIP3b bias-adjusted atmospheric climate input data](https://data.isimip.org/datasets/24cb1007-3c96-4b59-a0dc-42d94a8cff8c/)
- [JAXA’s Global ALOS 3D World (AW3D30)](https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm) - ALOS Global Digital Surface Model "ALOS World 3D - 30m (AW3D30)"
- [Kaggle datasets](https://www.kaggle.com/datasets)
- [Kaggle Weekly Kernels Award Winner Announcements](https://www.kaggle.com/general/37924#post354114)
- [Land Information New Zealand (LINZ) Data Service](https://data.linz.govt.nz/)
- [Legacy Aircraft Noise and Performance (ANP) data](https://www.easa.europa.eu/en/domains/environment/policy-support-and-research/aircraft-noise-and-performance-anp-data/anp-legacy-data)
- [LinkedIn - Data for Impact](https://economicgraph.linkedin.com/data-for-impact)
- [Lista de algunos datatsets dentro de paquetes de R](https://vincentarelbundock.github.io/Rdatasets/datasets.html)
- [M3LEO: A Multi-Modal Multi-Label Earth Observation Dataset](https://huggingface.co/M3LEO)
- [Mapas de Open Street Maps](http://download.geofabrik.de/)
- [Marine Regions](https://marineregions.org/downloads.php)
- [Marine Cadastre (AIS)](https://hub.marinecadastre.gov/)
- [Mendeley Data](https://data.mendeley.com/)
- [Microsoft - A Planetary Computer for a Sustainable Future](https://planetarycomputer.microsoft.com/)
- [Microsoft Cognitive Services](https://www.microsoft.com/cognitive-services/)
- [Microsoft Research Open Data](https://msropendata.com/)
- [More datasets for teaching data science: The expanded dslabs package](https://simplystatistics.org/posts/2019-07-19-more-datasets-for-teaching-data-science-the-expanded-dslabs-package/)
- [Multi-Temporal Crop Classification with HLS Imagery across CONUS](https://beta.source.coop/repositories/clarkcga/multi-temporal-crop-classification/description/)
- [Multimodal Remote Sensing Benchmark Datasets for Land Cover Classification](https://github.com/danfenghong/ISPRS_S2FL)
- [Naciones Unidas. Datos detallados de comercio global](https://comtradeplus.un.org/)
- [NAIP: National Agriculture Imagery Program](https://developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ)
- [NASA Common Metadata Repository (CMR) SpatioTemporal Asset Catalog (STAC)](https://github.com/opengeos/aws-open-data-stac)
- [NASA Earth Observations (NEO)](https://neo.gsfc.nasa.gov/)
- [NASA](https://nssdc.gsfc.nasa.gov/)
- NASA Fire Information for Resource Management System (FIRMS) [Link1](https://firms.modaps.eosdis.nasa.gov/) [Link2](https://www.earthdata.nasa.gov/data/tools/firms) - Near real-time data on wildfires from MODIS and VIIRS satellites.
- [NASA Earthdata](https://earthdata.nasa.gov/) - Shuttle Radar Topography Mission (SRTM)
- [NASA POWER (Prediction of Worldwide Energy Resources)](https://power.larc.nasa.gov/) - Provides global weather and solar radiation data for energy, agriculture, and environmental sectors.
- [NASDAQ](https://indexes.nasdaqomx.com/Index/History/NQASPA8600AUD)
- [National Historical Geographic Information System (NHGIS)](https://www.nhgis.org/)
- [National Map (USGS)](https://www.usgs.gov/programs/national-geospatial-program/national-map) - National Elevation Dataset (NED), LiDAR, and more
- [Natural Earth Data](https://www.naturalearthdata.com/downloads/) - Raster data for relief and shaded relief imagery.
- [Natural Earth](http://www.naturalearthdata.com/)
- [Nature Scientific Data](https://www.nature.com/sdata/)
- [NHS Digital](digital.nhs.uk/data-and-information/statistical-publications-open-data-and-data-products)
- [NHSR datasets](https://github.com/nhs-r-community/NHSRdatasets)
- [NLP Datasets](https://github.com/niderhoff/nlp-datasets/blob/master/README.md)
- [NOAA Daily Global Historical Climatology Network - Kaggle dataset](https://www.kaggle.com/noaa/ghcn-d)
- [NOAA. Agencia de meteo. USA.](http://www.nesdis.noaa.gov/index.html)
- [NOAA Global Forecast System (GFS)](https://www.ncei.noaa.gov/) - Weather forecasts for temperature, precipitation, and wind.
- [OCDE](https://data.oecd.org/)
- [One versus One - European football statistics](https://one-versus-one.com/en)
- [Openaerialmap](https://openaerialmap.org/) - Aerial imagery collected by individuals and organizations.
- [Open Africa dataset](https://open.africa/dataset)
- [Open Data Barometer](https://opendatabarometer.org/?_year=2017&indicator=ODB)
- [Open data EMT](http://opendata.emtmadrid.es/)
- [Open Data Inception. 1.600 portales abiertos](http://wwwhatsnew.com/2016/03/19/open-data-inception-recopilacion-de-1600-portales-de-datos-abiertos/?utm_content=buffer4e4d4&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer)
- [Open Data Renfe](http://data.renfe.com/)
- [Open Data Sources Database](https://anthonyhuntley.com/data-science-databases/#DataSourceDatabase)
- [Open High-Resolution Satellite Imagery: The WorldStrat Dataset -- With Application to Super-Resolution](https://arxiv.org/abs/2207.06418)
- [Open Topography](https://opentopography.org/) - Various high-resolution DEM datasets from LiDAR and other sources
- [Open Trade Statistics](https://tradestatistics.io/)
- [openaddresses](https://openaddresses.io/)
- [OpenCelliD - Open Database of Cell Towers](https://www.opencellid.org/downloads.php)
- [Opendata del CERN](http://opendata.cern.ch/)
- [Opendatasoft](https://documentation-resources.opendatasoft.com/explore/?sort=modified)
- [openflights.org/](https://openflights.org/)
- [OpenGEOS data](https://github.com/opengeos/data)
- [OpenWeatherMap](https://openweathermap.org/api)
- [OSM Landuse](https://osmlanduse.org/)
- OSM-Building-Classification [Data](https://osf.io/utgae/) [Code](https://github.com/gmuggs/OSM-Building-Classification) [Paper](https://www.nature.com/articles/s41597-024-04046-w) - Classification of 67,705,475 buildings across the United States into residential and non-residential
- [Overture - Fused-partitioned](https://beta.source.coop/repositories/fused/overture/description/)
- [Overture Maps](https://github.com/OvertureMaps/data)
- [Paquete de R 'datasets'](http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/00Index.html)
- [Paquete pasra acceder al API del Instituto de Canario de Estadística](https://github.com/rOpenSpain/istacbaser)
- [Pew Research Center](https://www.pewresearch.org/download-datasets/)
- [Planet SkySat Public Ortho Imagery, Multispectral](https://developers.google.com/earth-engine/datasets/catalog/SKYSAT_GEN-A_PUBLIC_ORTHO_MULTISPECTRAL)
- [Propublica](https://www.propublica.org/data/)
- [RapidAI4EO: A Corpus of Dense Time Series Satellite Imagery](https://beta.source.coop/repositories/planet/rapidai4eo/description/)
- [Rdatasets](https://vincentarelbundock.github.io/Rdatasets/articles/data.html)
- [Recopilación de datasets de BigML](https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning/)
- [Red Eléctrica Española (REE) - API](https://www.ree.es/es/apidatos)
- [Red Natura 2000](https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/rednatura2000_descargas.html)
- [Reddit datasets](https://www.reddit.com/r/datasets/)
- [rspatialdata is a collection of data sources and tutorials on visualising spatial data using R](https://rspatialdata.github.io/)
- [SARDet-100K: large-scale multi-class SAR object detection dataset](https://eod-grss-ieee.com/dataset-detail/U1dJZE1BY1RwclAvOFFJQmlKR1Btdz09)
- [Satélite Landsat](https://aws.amazon.com/public-data-sets/landsat/)
- [Satellite imagery datasets containing ships](https://github.com/jasonmanesis/Satellite-Imagery-Datasets-Containing-Ships)
- [SEN12MS-CR. 22,218 patch triplets of corresponding Sentinel-1 dual-pol SAR data, Sentinel-2 multi-spectral images, and cloud-covered Sentinel-2 multi-spectral images](https://mediatum.ub.tum.de/1554803)
- [Sen2Like](https://docs.openeo.cloud/usecases/ard/sen2like/#_1-sen2like-for-rgb)
- [SEN2NAIP - Remote sensing dataset designed to support conventional and reference-based SR model training](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP)
- [Sentinel Hub NoR Sponsored Accounts and Data Collections](https://www.sentinel-hub.com/Network-of-Resources/)
- [Sentinel Satellite Data](https://browser.dataspace.copernicus.eu)
- [Sentinel-5P](https://developers.google.com/earth-engine/datasets/catalog/sentinel-5p)
- [Sentinel-2 data set for the delineation of agricultural field boundaries in Flevoland, The Netherlands](https://phys-techsciences.datastations.nl/dataset.xhtml?persistentId=doi:10.17026/dans-x8d-p6zm)
- [Síntesis de Indicadores e Informes Macroeconómicos](https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/EconomiaInformesMacro.aspx)
- [SkyFi Geospatial Hub](https://skyfi.com/)
- [SkySat missions](https://earth.esa.int/eogateway/missions/skysat)
- Socioeconomic Data and Applications Center (SEDAC)[Link1](https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse) y [Link2](https://earthdata.nasa.gov/centers/sedac-daac)
- [Some datasets for teaching data science](https://simplystatistics.org/posts/2018-01-22-the-dslabs-package-provides-datasets-for-teaching-data-science/)
- [Source Cooperative Featured Repositories](https://beta.source.coop/)
- [STAC Index SpatioTemporal Asset Catalog (STAC)](https://github.com/opengeos/stac-index-catalogs)
- [StatsBomb sports data](https://statsbomb.com/what-we-do/hub/free-data/)
- [TanDEM-X 90m DEM (DLR)](https://download.geoservice.dlr.de/TDM90/) - Global DEM generated from radar data
- [Teaching of Statistics in the Health Sciences](https://causeweb.org/tshs/)
- [Tematicas.org Recopilación de series e índices](https://tematicas.org/)
- [Terra Populus](https://terra.ipums.org/)
- [Terraclimate](https://www.climatologylab.org/terraclimate.html) - Monthly climate and hydrology data at a global scale.
- [The Big Bad NLP Database](https://datasets.quantumstat.com/)
- [The Government Finance Database](https://willamette.edu/mba/research-impact/public-datasets/index.html)
- [The SpaceNet Datasets](https://spacenet.ai/datasets/)
- [The World Bank Open Knowledge Repository](https://openknowledge.worldbank.org)
- [The world’s economic database](https://db.nomics.world/)
- [TidyRainbow](https://github.com/r-lgbtq/tidyrainbow)
- [TidyTuesday](https://github.com/rfordatascience/tidytuesday)
- [Tráfico en el Reino Unido](https://webarchive.nationalarchives.gov.uk/ukgwa/*/http://www.dft.gov.uk/traffic-counts/)
- [UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/datasets)
- [UC Merced Land Use Dataset](http://weegee.vision.ucmerced.edu/datasets/landuse.html)
- [UCI Machine Learning Repository](http://archive.ics.uci.edu/ml/)
- [UK Data Service](https://ukdataservice.ac.uk/)
- [UK Office for National Statistics](https://www.ons.gov.uk/)
- [UK Open Data](https://data.gov.uk/search)
- [UK Open Geography Portal](https://geoportal.statistics.gov.uk/)
- [Ultimos datos de Open Street Map. Spain](https://download.geofabrik.de/europe/spain.html)
- [Una recopilación de APIs públicas](https://github.com/toddmotto/public-apis)
- [Una recopilación de datasets públicos](https://github.com/caesar0301/awesome-public-datasets)
- [Understat](https://understat.com/)
- [UNEP Environmental Data Explorer](https://www.unep.org/publications-data)
- [United Nations Platform for Space-based Information for Disaster Management and Emergency Response (un-spider.org) data sources](https://un-spider.org/links-and-resources/data-sources)
- [United Nations World Urbanization Prospects](https://population.un.org/wup/)
- [Universidad de Harvard](https://dataverse.harvard.edu/)
- [US Homeland Infrastructure Foundation-Level Data](https://hifld-geoplatform.hub.arcgis.com/)
- [USGS 3DEP LiDAR Point Clouds](https://registry.opendata.aws/usgs-lidar/)
- [USGS Earth Explorer](https://earthexplorer.usgs.gov/) - SRTM, ASTER GDEM, ALOS, and more
- [Viewfinder Panoramas](https://viewfinderpanoramas.org/) - High-quality DEM for remote regions
- [WHU-RS19 is a set of satellite images exported from Google Earth](https://paperswithcode.com/dataset/whu-rs19)
- [World Economic Forum](https://www.weforum.org/publications/)
- WorldCereal open global harmonized reference data repository [Data]](https://zenodo.org/records/7609500) [Github](https://github.com/WorldCereal/worldcereal-classification)
- [Worldpop - Open Spatial Demographic Data](https://www.worldpop.org/) y [Worldpop Hub](https://hub.worldpop.org/)
- [Yelp Dataset](https://www.yelp.com/dataset)
- [Zhu Lab - Data Science in Earth Observation](https://github.com/zhu-xlab)
- Amazon AWS: [este](http://aws.amazon.com/es/datasets/) y [este](https://aws.amazon.com/es/public-data-sets/)
- EarthNets for Earth Observation [Page](https://earthnets.nicepage.io/) [Github](https://github.com/EarthNets)
- Facebook Neural-Code-Search-Evaluation-Dataset [dataset]](https://github.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset) y [noticia](https://venturebeat.com/2019/10/03/facebook-open-sources-data-set-for-code-search-ai-benchmark/)
- HREA: High Resolution Electricity Access. [Universidad de Michigan](https://hrea.isr.umich.edu/index.html) y [Microsoft](https://planetarycomputer.microsoft.com/dataset/hrea#overview)
- IPUMS provides census and survey data from around the world [Web](https://www.ipums.org/) y [paquete ipumsr](https://tech.popdata.org/ipumsr/)
- Maxar Open Data: [Aquí](https://github.com/opengeos/maxar-open-data) y [aquí](https://radiantearth.github.io/stac-browser/#/external/maxar-opendata.s3.amazonaws.com/events/catalog.json?.language=es)
- MIT [1](http://web.mit.edu/towtank/www/vivdr/datasets.html) y [2](https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/datasets/)
- Natural Earth Vector. [Github](https://github.com/nvkelso/natural-earth-vector) y [Web](https://www.naturalearthdata.com/)
- Open Charge Map. Global Open Data registry of electric vehicle charging locations. [Export](https://github.com/openchargemap/ocm-export) y [Ejemplo](https://tech.marksblogg.com/open-charge-map-global-ev-charging-point-dataset.html)
- SSL4EO-S12 dataset. Large-scale multimodal multitemporal dataset for unsupervised/self-supervised pre-training in Earth observation [Paper](https://arxiv.org/abs/2211.07044) [Github](https://github.com/zhu-xlab/SSL4EO-S12)
- World Bank Open Data [1](https://data.worldbank.org/) y [2](https://datacatalog.worldbank.org/)
## Otras referencias interesantes
- [100 Active Blogs on Analytics, Big Data, Data Mining, Data Science, Machine Learning](https://www.kdnuggets.com/2016/03/100-active-blogs-analytics-big-data-science-machine-learning.html#.VvqjkSV5Tio.linkedin)
- [100 Free Tutorials for Learning R](https://www.listendata.com/p/r-programming-tutorials.html)
- [16 Cursos](https://www.analyticsvidhya.com/blog/2016/10/16-new-must-watch-tutorials-courses-on-machine-learning/?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+AnalyticsVidhya+%28Analytics+Vidhya%29)
- [A dive into R Markdown](http://cfss.uchicago.edu/program_rmarkdown.html)
- [A ggplot2 Tutorial for Beautiful Plotting in R](https://cedricscherer.netlify.app/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/)
- [AiTLAS: Benchmark Arena -- Open-source benchmark suite for evaluating deep learning approaches for image classification in Earth Observation (EO)](https://github.com/biasvariancelabs/aitlas-arena)
- [An Introduction to Statistical Learning - Web R & Python](https://www.statlearning.com/)
- [ArcGIS to R spatial cheat sheet](http://www.seascapemodels.org/data/ArcGIS_to_R_Spatial_CheatSheet.pdf)
- [Awesome Data Science](https://github.com/academic/awesome-datascience)
- [Awesome R](https://github.com/qinwf/awesome-R)
- [BigEarthNet A Large-Scale Sentinel Benchmark Archive](https://bigearth.net/)
- [Bivariate Choropleth Maps: A How-to Guide](https://www.joshuastevens.net/cartography/make-a-bivariate-choropleth-map/)
- [blogdown: Creating Websites with R Markdown](https://bookdown.org/yihui/blogdown/)
- [Blogs con github](http://jmcglone.com/guides/github-pages/) y [Blogs con github y RStudio](http://andysouth.github.io/blog-setup/)
- [CAMIS - A PHUSE DVOST Working Group](https://psiaims.github.io/CAMIS/). The repository below provides examples of statistical methodology in different software and languages, along with a comparison of the results obtained and description of any discrepancies.
- [Chuleta de expresiones regulares](https://github.com/rstudio/cheatsheets/blob/main/regex.pdf)
- [Chuleta general de R](https://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf)
- [Codificación de caracteres](https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/)
- [Common Probability Distributions: The Data Scientist’s Crib Sheet](https://blog.cloudera.com/blog/2015/12/common-probability-distributions-the-data-scientists-crib-sheet/?utm_content=buffer49e9f&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer)
- [Cómo crear una API en Python](https://anderfernandez.com/blog/como-crear-api-en-python/)
- [Computer vision](https://github.com/kjw0612/awesome-deep-vision)
- [Computerworld - Paquetes de R interesantes](https://www.computerworld.com/article/1375862/great-r-packages-for-data-import-wrangling-visualization.html)
- [Curso Caltech. Learning from data](https://work.caltech.edu/telecourse.html)
- [Cursos para aprender más sobre R](https://datos.gob.es/es/noticia/cursos-para-aprender-mas-sobre-r)
- [Data Science Blogs](https://github.com/rushter/data-science-blogs)
- [Data Science Cheatsheets](https://github.com/FavioVazquez/ds-cheatsheets)
- [Data Science Collected Resources](https://github.com/tirthajyoti/Data-science-best-resources)
- [Data Science Resources](https://github.com/jonathan-bower/DataScienceResources)
- [Data Scientist Roadmap](https://github.com/MrMimic/data-scientist-roadmap)
- [Data Viz Catalogue](https://graphica.app/catalogue)
- [Dataviz Project](https://datavizproject.com/)
- [Dealing with Regular Expressions](http://uc-r.github.io/regex)
- [Ejemplos de Shiny](http://zevross.com/blog/2016/04/19/r-powered-web-applications-with-shiny-a-tutorial-and-cheat-sheet-with-40-example-apps/)
- [Estadística con R](https://www.cienciadedatos.net/estadistica-con-r.html)
- [EUMETSAT science studies](https://www.eumetsat.int/science-studies)
- [Feature Engineering for Machine Learning](https://trainindata.medium.com/feature-engineering-for-machine-learning-a-comprehensive-overview-a7ad04c896f8)
- [Financial-Times / chart-doctor](https://github.com/Financial-Times/chart-doctor/tree/main/visual-vocabulary)
- [Formatos a medida para R Markdown](http://www.r-bloggers.com/r-markdown-custom-formats/)
- [Free R Reading Material](https://committedtotape.shinyapps.io/freeR/)
- [From Data to Viz](https://www.data-to-viz.com/)
- [Galerias de graficos](http://www.r-graph-gallery.com/)
- [Ggplot](http://socviz.co/)
- [GIS and mapping](https://nowosad.github.io/SIGR2021/workshop1/workshop1_jn.html#1)
- [GIS formats](https://atlas.co/formats/)
- [Glosario de Machine Learning de Google](https://developers.google.com/machine-learning/glossary/)
- [Google Dataset Search](datasetsearch.research.google.com)
- [Google Rules of Machine Learning: Best Practices for ML Engineering](http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf)
- [Google's best practices in machine learning](https://developers.google.com/machine-learning/guides/rules-of-ml/)
- [HDRIs Images (HDRIs)](https://polyhaven.com/hdris))
- [HOT - Drone Tasking Manager](https://github.com/hotosm/Drone-TM)
- [htmlwidgets for R - gallery](http://gallery.htmlwidgets.org/)
- [IDEAtlas. Developing AI-based methods to map and characterize informal settlements from Earth Observation data](https://ideatlas.eu/)
- [Información de Rmarkdown en R Studio](http://rmarkdown.rstudio.com/)
- [Information is Beautiful Awards](https://www.informationisbeautifulawards.com/)
- [Information is beautiful](https://informationisbeautiful.net/)
- [Information is Beautiful](informationisbeautiful.net/data)
- [Interactive 4D LiDAR Segmentation](https://ilya-fradlin.github.io/Interactive4D/)
- [Investigative Journalism with Satellite Images](https://bourgoing.com/en/linvestigation-par-satellite/)
- [Kaggle Winning Solutions](http://kagglesolutions.com/)
- [Microsoft Presidio - Data Protection and De-identification SDK](https://microsoft.github.io/presidio/)
- [Naming files](https://speakerd.s3.amazonaws.com/presentations/5e4b07f0d9a94f8e9a29b902bad6ed0b/naming-slides.pdf)
- [Otra lista de recursos variados en Github](https://github.com/Shujian2015/FreeML)
- [overpass turbo - Herremaienta de filtrado para OSM](https://overpass-turbo.eu/)
- [Pandoc User’s Guide](http://pandoc.org/MANUAL.html#templates)
- [Periodic Table Of Visualization Methods](https://www.visual-literacy.org/periodic_table/periodic_table.html)
- [Plataforma H2O](https://github.com/h2oai)
- [Practical Introduction to Web Scraping in R](https://blog.rsquaredacademy.com/web-scraping/)
- [R Code – Best practices](https://www.r-bloggers.com/r-code-best-practices/)
- [R Coding Style Guide](https://irudnyts.github.io//r-coding-style-guide/)
- [R Data Science Tutorials](https://github.com/ujjwalkarn/DataScienceR)
- [R for Water Resources Data Science](https://www.r4wrds.com/)
- [R Learning Path: From beginner to expert in R in 7 steps](https://www.kdnuggets.com/2016/03/datacamp-r-learning-path-7-steps.html)
- [R Markdown cheatsheet](https://raw.githubusercontent.com/rstudio/cheatsheets/main/rmarkdown.pdf)
- [R Markdown referencia](https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf)
- [R package primer](https://kbroman.org/pkg_primer/)
- [R Universe search](https://r-universe.dev/search)
- [RDocumentation](https://www.rdocumentation.org/)
- [Regular Expression Language - Quick Reference](https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference)
- [Regular Expressions Every R programmer Should Know](https://www.r-bloggers.com/regular-expressions-every-r-programmer-should-know/)
- [Remote Sensing for OSINT](https://bellingcat.github.io/RS4OSINT/)
- [Remote sensing image retrieval](https://github.com/IBM/remote-sensing-image-retrieval)
- [RMarkdown Driven Development (RmdDD)](https://emilyriederer.netlify.app/post/rmarkdown-driven-development/)
- [rseek.org - rstats search engine](https://rseek.org/)
- [Rstudio cheatsheets](https://www.rstudio.com/resources/cheatsheets/?utm_content=buffer1b56a&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer)
- [Simplifying the ROC and AUC metrics](https://towardsdatascience.com/understanding-the-roc-and-auc-curves-a05b68550b69)
- [Soporte técnico de RStudio](https://support.posit.co/hc/en-us)
- [Study finds 94% of business spreadsheets have critical errors](https://phys.org/news/2024-08-business-spreadsheets-critical-errors.html)
- [Template para documentos científicos con Rmarkdown](http://www.petrkeil.com/?p=2401)
- [The Chartmaker Directory](chartmaker.visualisingdata.com)
- [The Data Visualisation Catalogue](https://datavizcatalogue.com/)
- [The R Graph Gallery](https://r-graph-gallery.com/)
- [The State of Naming Conventions in R](https://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf)
- [The TimeViz Browser 2.0](https://browser.timeviz.net/)
- [Tipos de licencias de software](https://choosealicense.com/licenses/)
- [Tipos de licencias open data (minicurso de data.europa.edu)](https://data.europa.eu/en/academy/open-data-licensing)
- [Tutorials for learning R](https://www.r-bloggers.com/how-to-learn-r-2/)
- [UK government using R to modernize reporting of official statistics](https://www.r-bloggers.com/uk-government-using-r-to-modernize-reporting-of-official-statistics/)
- [Usar git](https://try.github.io/levels/1/challenges/1)
- [useR! Machine Learning Tutorial](https://github.com/ledell/useR-machine-learning-tutorial)
- [Using Geospatial Data in R](https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/geospatial-data/)
- [Utilizando Sweave y Knitr](https://support.posit.co/hc/en-us/articles/200552056-Using-Sweave-and-knitr)
- [Web Scraping TripAdvisor, Text Mining and Sentiment Analysis for Hotel Reviews](https://towardsdatascience.com/scraping-tripadvisor-text-mining-and-sentiment-analysis-for-hotel-reviews-cc4e20aef333)
- [Writing an R package from scratch](https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/)
- Global Fishing Watch. AI and satellite imagery to reveal the expanding footprint of human activity at sea. [Post](https://globalfishingwatch.org/press-release/new-research-harnesses-ai-and-satellite-imagery-to-reveal-the-expanding-footprint-of-human-activity-at-sea/?utm_source=GFW+subscribers&utm_campaign=9363c93195-EMAIL_CAMPAIGN_JAN_2024_CURRENT_ENGLISH&utm_medium=email&utm_term=0_-9363c93195-%5BLIST_EMAIL_ID%5D). [Github](https://github.com/GlobalFishingWatch/paper-industrial-activity/tree/main). [Train data](https://figshare.com/articles/journal_contribution/Satellite_mapping_reveals_extensive_industrial_activity_at_sea_-_training_data/24309469). [Analysis data](https://figshare.com/articles/journal_contribution/Satellite_mapping_reveals_extensive_industrial_activity_at_sea_-_analysis_data/24309475) and [Vessel detection from Sentinel-1 SAR](https://globalfishingwatch.org/data-download/datasets/public-sar-vessel-detections:v20231026)
- Legalidad Web sraping: [Is Web Scraping Legal? : The Definitive Guide (2024 update)](https://prowebscraper.com/blog/is-web-scraping-legal/) y [Web Scraping: ¿legal o ilegal?](https://ecija.com/web-scraping-legal-ilegal/)
- Pautas para dar formato al código programando en R: [Google](https://google.github.io/styleguide/Rguide.xml), [Hadley Wickham (RStudio)](http://adv-r.had.co.nz/Style.html) y [Coding Club](https://ourcodingclub.github.io/2017/04/25/etiquette.html#syntax)
- Sistemas de Coordenadas. [Aqui](https://rspatial.org/spatial/rst/6-crs.html) y [aqui](https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/OverviewCoordinateReferenceSystems.pdf)
- Statistical Learning de Stanford with R [Curso](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning-r), [Libro](https://hastie.su.domains/ElemStatLearn/), [Código](https://github.com/khanhnamle1994/statistical-learning) y [Transparencias](https://github.com/khanhnamle1994/statistical-learning/tree/master/Lecture-Slides)
## Libros
- [10 Free Must-Read Books for Machine Learning and Data Science](https://www.kdnuggets.com/2017/04/10-free-must-read-books-machine-learning-data-science.html?utm_content=bufferc386f&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer)
- [Advanced R](https://adv-r.hadley.nz/index.html)
- [Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA](https://becarioprecario.bitbucket.io/spde-gitbook/)
- [An Introduction to R](https://intro2r.com/)
- [An Introduction to Spatial Data Analysis and Visualisation in R](https://www.spatialanalysisonline.com/An%20Introduction%20to%20Spatial%20Data%20Analysis%20in%20R.pdf)
- [An R companion to Statistics: data analysis and modelling](https://mspeekenbrink.github.io/sdam-r-companion/index.html)
- [Análisis de datos y algoritmos de predicción con R](http://rafalab.dfci.harvard.edu/dslibro/)
- [Aprendiendo R sin morir en el intento](https://aprendiendo-r-intro.netlify.app/)
- [Aprendizaje Estadístico con R](https://rubenfcasal.github.io/aprendizaje_estadistico/index.html)
- [Bayesian inference with INLA](https://becarioprecario.bitbucket.io/inla-gitbook/index.html)
- [BBC Visual and Data Journalism cookbook for R graphics](https://bbc.github.io/rcookbook/)
- [Big Book of R](https://www.bigbookofr.com/index.html)
- [Bioinformática Estadística. Análisis estadístico de datos Ómicos](https://www.uv.es/ayala/docencia/tami/tami13.pdf)
- [Building reproducible analytical pipelines with R](https://raps-with-r.dev/)
- [Command Line Basics for R Users](https://bash-intro.rsquaredacademy.com/)
- [Creating APIs in R with Plumber](https://www.rplumber.io/docs/index.html)
- [Data Analysis and Prediction Algorithms with R](http://rafalab.dfci.harvard.edu/dsbook/)
- [Data Science in Education Using R](https://datascienceineducation.com/)
- [Data Skills for Reproducible Science](https://psyteachr.github.io/msc-data-skills/)
- [Data Visualization with R](https://rkabacoff.github.io/datavis/)
- [Databases using R by RStudio](https://db.rstudio.com/getting-started/)
- [Deep Learning and Scientific Computing with R torch](https://skeydan.github.io/Deep-Learning-and-Scientific-Computing-with-R-torch/)
- [Deep Learning](https://srdas.github.io/DLBook/)
- [Econometrics with the Tidyverse](https://colleen.quarto.pub/the-tidy-econometrics-workbook/)
- [Efficient R programming](https://csgillespie.github.io/efficientR/)
- [Efficient Machine Learning with R](https://emlwr.org/)
- [Elegant and informative maps with tmap](https://r-tmap.github.io/tmap-book/)
- [Engineering Production-Grade Shiny Apps](https://engineering-shiny.org/)
- [Estadística básica](https://www.uv.es/ayala/docencia/nmr/nmr13.pdf)
- [Estilometría, análisis de textos en R para filólogos](http://www.aic.uva.es/cuentapalabras/presentacion.html)
- [Exploring Complex Survey Data Analysis Using R](https://tidy-survey-r.github.io/tidy-survey-book/)
- [Exploratory Data Analysis with R - Roger D. Peng](https://bookdown.org/rdpeng/exdata/)
- [Forecasting: Principles and Practice](https://otexts.com/fpp3/)
- [Feature Engineering A-Z](https://feaz-book.com/)
- [Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny](http://www.paulamoraga.com/book-geospatial/)
- [Handbook of Graphs and Networks in People Analytics With Examples in R and Python](https://ona-book.org/)
- [Handbook of Regression Modeling in People Analytics](https://peopleanalytics-regression-book.org/)
- [Handling Strings with R](http://www.gastonsanchez.com/r4strings/)
- [Hands-On Data Visualization](https://handsondataviz.org/)
- [Hands-On Machine Learning with R](https://bradleyboehmke.github.io/HOML/)
- [Hands-On Programming with R](https://rstudio-education.github.io/hopr/)
- [Happy Git and GitHub for the useR](https://happygitwithr.com/)
- [Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/)
- [Introducción a R](https://cran.r-project.org/doc/contrib/R-intro-1.1.0-espanol.1.pdf)
- [Introduction to Econometrics with R](https://www.econometrics-with-r.org/)
- [Introduction to Probability for Data Science](https://probability4datascience.com/index.html)
- [Introduction to urban accessibility: a practical guide in R](https://github.com/ipeaGIT/intro_access_book)
- [JavaScript for R](https://book.javascript-for-r.com/)
- [Learning Statistics with R](https://learningstatisticswithr.com/)
- [Libro Vivo de Ciencia de Datos](https://librovivodecienciadedatos.ai/)
- [Linear Algebra for Data Science](https://shainarace.github.io/LinearAlgebra/index.html)
- [Model to Meaning](https://marginaleffects.com/)
- [Modern R with the tidyverse](https://b-rodrigues.github.io/modern_R/)
- [NASA Earthdata Cloud Cookbook](https://nasa-openscapes.github.io/earthdata-cloud-cookbook/)
- [Officeverse R & Office](https://ardata-fr.github.io/officeverse/index.html)
- [Open Source Technology in Clinical Data Analysis](https://phuse-org.github.io/OSTCDA/)
- [Outstanding User Interfaces with Shiny](https://unleash-shiny.rinterface.com/)
- [Predictive Soil Mapping with R](https://soilmapper.org/)
- [Probabilidad básica](https://www.uv.es/ayala/docencia/probabilidad/prob.pdf)
- [Quantitative Politics with R](http://qpolr.com/)
- [R Advanced Spatial Lessons](https://bbest.github.io/R-adv-spatial-lessons/)
- [R for Data Analysis](https://trevorfrench.github.io/R-for-Data-Analysis/)
- [R for data science: tidyverse and beyond](https://bookdown.org/Maxine/r4ds/)
- [R for everyone](https://www.jaredlander.com/r-for-everyone/)
- [R for Health Data Science](https://argoshare.is.ed.ac.uk/healthyr_book/)
- [R Graphics Cookbook](https://r-graphics.org/index.html)
- [R in action](https://www.manning.com/books/r-in-action-second-edition)
- [R intro](https://cran.r-project.org/doc/manuals/R-intro.pdf)
- [R Markdown Cookbook](https://bookdown.org/yihui/rmarkdown-cookbook/)
- [R Markdown: The Definitive Guide](https://bookdown.org/yihui/rmarkdown/)
- [R Notes for Professionals](https://books.goalkicker.com/RBook/)
- [R Packages](https://r-pkgs.org/)
- [R para principiantes](https://cran.r-project.org/doc/contrib/rdebuts_es.pdf)
- [R para profesionales de los datos: una introducción](https://datanalytics.com/libro_r/)
- [R Programming for Data Science. Roger D. Peng.](https://leanpub.com/rprogramming)
- [R Programming for Data Science](https://www.cs.upc.edu/~robert/teaching/estadistica/rprogramming.pdf)
- [R4JournalismBook](https://smach.github.io/R4JournalismBook/)
- [rstudio4edu](https://rstudio4edu.github.io/rstudio4edu-book/)
- [Simulación Estadística con R](https://rubenfcasal.github.io/simbook/)
- [Spatial Analysis With R](http://gis.humboldt.edu/OLM/r/Spatial%20Analysis%20With%20R.pdf)
- [Spatial Data Science with applications in R](https://r-spatial.org/book/)
- [Spatial Data Science](https://keen-swartz-3146c4.netlify.app/)
- [Spatial Microsimulation with R](https://spatial-microsim-book.robinlovelace.net/index.html)
- [Spatial Modelling for Data Scientists](https://gdsl-ul.github.io/san/)
- [Statistical Inference via Data Science](https://moderndive.com/index.html)
- [Supervised Machine Learning for Text Analysis in R](https://smltar.com/)
- [Technical Foundations of Informatics](https://info201.github.io/)
- [Text Mining with R](https://www.tidytextmining.com/)
- [The 20 Best Data Science Books Available online in 2020](https://www.ubuntupit.com/best-data-science-books-available-online/)
- [The Art of Data Science](https://bookdown.org/rdpeng/artofdatascience/)
- [The caret Package](http://topepo.github.io/caret/index.html)
- [The Epidemiologist R Handbook](https://epirhandbook.com/en/)
- [The R Book](https://www.cs.upc.edu/~robert/teaching/estadistica/TheRBook.pdf)
- [The Shiny AWS Book](https://business-science.github.io/shiny-production-with-aws-book/)
- [Think Bayes 2e](https://github.com/AllenDowney/ThinkBayes2)
- [Tidy Finance with R](https://tidy-finance.org/)
- [Tidy Finance](https://www.tidy-finance.org/)
- [Todos los libros en bookdown](https://bookdown.org/home/archive/)
- [Twitter for Scientists](https://t4scientists.com/)
- [What They Forgot to Teach You About R](https://whattheyforgot.org/)
- [YaRrr! The Pirate’s Guide to R](https://bookdown.org/ndphillips/YaRrr/)
- Applied Statistics with R [Libro](https://daviddalpiaz.github.io/appliedstats/) y [Código](https://github.com/daviddalpiaz/appliedstats)
- Data Science Live Book [Libro](https://livebook.datascienceheroes.com/) y [Código](https://github.com/pablo14/data-science-live-book)
- Fundamentals of Data Visualization [Libro](https://clauswilke.com/dataviz/) y [Código](https://github.com/clauswilke/dataviz)
- Geocomputation with R [Libro](https://geocompr.robinlovelace.net/) y [Código](https://github.com/Robinlovelace/geocompr/)
- Introduction to Data Science [Libro](https://rafalab.github.io/dsbook/) y [Código](https://github.com/rafalab/dsbook)
- Mastering Apache Spark with R [Libro](https://therinspark.com/intro.html) y [Código](https://github.com/r-spark/the-r-in-spark)
- R for Data Science. [Inglés](https://r4ds.hadley.nz/) y [Castellano](https://es.r4ds.hadley.nz/)
- R for Statistical Learning [Libro](https://daviddalpiaz.github.io/r4sl/) y [Código](https://github.com/daviddalpiaz/r4sl)
- sits: Satellite Image Time Series Analysis on Earth Observation Data Cubes [Libro](https://e-sensing.github.io/sitsbook/index.html) y [Kaggle](https://www.kaggle.com/esensing/code)