-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathNeuron.m
242 lines (217 loc) · 8.62 KB
/
Neuron.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
classdef Neuron < sbfsem.core.NeuronAPI
% NEURON
%
% Description:
% A Matlab representation of a neuron ('Structure') in Viking
%
% Constructor:
% obj = Neuron(cellID, source, includeSynapses);
% or
% obj = Neuron({cellID, source, includeSynapses});
%
% Inputs:
% cellID Viking Structure ID (double)
% source Volume name or abbreviation (char)
% Optional input:
% includeSynapses Load synapses (logical, default = false)
%
% Methods:
% For a complete list, see the docs or type 'methods('Neuron')'.
% or 'methods('sbfsem.core.NeuronAPI')'.
%
% Methods moved to external functions:
% util/analysis/addAnalysis.m
% util/renders/getBoundingBox.m
% util/analysis/getIE.m
%
% History:
% 14Jun2017 - SSP - Created
% 01Aug2017 - SSP - Switched createUi to separate NeuronApp class
% 25Aug2017 - SSP - Added analysis property & methods
% 2Oct2017 - SSP - Ready for OData-based import
% 12Nov2017 - SSP - In sync with OData changes
% 4Jan2018 - SSP - New OData classes, added render methods
% 16Feb2018 - SSP - Added the omittedIDs property, applied in obj.graph()
% 6Mar2018 - SSP - NeuronCache compatibility
% 19Jul2018 - SSP - Option to specify different XY transforms
% 10Jan2020 - SSP - Links property to access getAllLinkedNeurons output
% 18Jun2020 - SSP - Added getLinksByType function
% -------------------------------------------------------------------------
properties
links
end
properties (Transient = true, Hidden = true)
ODataClient
GeometryClient
SynapseClient
includeSynapses
end
methods
function obj = Neuron(ID, source, includeSynapses, transform)
% NEURON Basic cell data model
%
% Required inputs:
% ID Cell ID number in Viking
% source Volume ('i', 't', 'r')
% Optional inputs:
% includeSynapses Import synapses (default=false)
% transform Which XY transform (default=Viking)
%
% Use:
% % Import c127 in NeitzInferiorMonkey
% c127 = Neuron(127, 'i');
% -------------------------------------------------------------
[email protected](ID, source);
% By default, synapses are not imported
if nargin < 3
obj.includeSynapses = false;
else
assert(islogical(includeSynapses),...
'includeSynapses must be true or false');
obj.includeSynapses = includeSynapses;
end
% Default transform is local sbfsem-tools XY offset
if nargin == 4
if ischar(transform)
obj.transform = sbfsem.builtin.Transforms.fromStr(transform);
elseif isa(transform, 'sbfsem.builtin.Transforms')
obj.transform = transform;
end
else
obj.transform = sbfsem.builtin.Transforms.Standard;
end
fprintf('-----c%u-----\n', obj.ID);
% Instantiate OData clients
if obj.includeSynapses
obj.SynapseClient = sbfsem.io.SynapseOData(obj.ID, obj.source);
else
obj.SynapseClient = [];
end
obj.GeometryClient = [];
% Fetch neuron OData and parse
obj.pull();
fprintf('\n\n');
end
function getGeometries(obj)
% GETGEOMETRIES Import ClosedCurve-related OData
if isempty(obj.GeometryClient)
obj.GeometryClient = sbfsem.io.GeometryOData(obj.ID, obj.source);
end
obj.geometries = obj.GeometryClient.pull();
end
function getSynapses(obj)
% GETSYNAPSES Import child structures
obj.includeSynapses = true;
if isempty(obj.SynapseClient)
obj.SynapseClient = sbfsem.io.SynapseOData(obj.ID, obj.source);
end
% Run query for the child structure annotations
[obj.synapses, childNodes, childEdges] = obj.SynapseClient.pull();
% Clear out any existing synapse nodes/edges
obj.nodes(obj.nodes.ParentID ~= obj.ID,:) = [];
obj.edges(obj.edges.ID ~= obj.ID,:) = [];
% Merge with neuron nodes/edges
obj.nodes = [obj.nodes; obj.setXYZum(childNodes)];
obj.edges = [obj.edges; childEdges];
obj.setupSynapses();
end
function getLinks(obj)
% GETLINKS Loads in linked neurons
obj.checkSynapses();
T = getAllLinkedNeurons(obj);
if isempty(T)
return;
end
obj.links = sortrows(T, 'NeuronID');
end
function update(obj)
% UPDATE Updates existing OData
% If you haven't imported synapses the update will skip them
fprintf('NEURON: Updating OData for c%u\n', obj.ID);
obj.pull();
obj.lastModified = datestr(now);
end
function checkSynapses(obj)
% SYNAPSECHECK Try to import synapses, if missing
if isempty(obj.synapses)
obj.getSynapses();
end
end
function checkGeometries(obj)
% CHECKGEOMETRIES Try to import geometries, if missing
if isempty(obj.geometries)
obj.getGeometries();
end
end
function checkLinks(obj)
% CHECKLINKS Imports links if not present
if isempty(obj.links)
obj.getLinks();
end
end
function T = getLinksByType(obj, synapseName)
% GETLINKSBYTYPE Return links for one synapse type
%
% Syntax:
% T = getLinksByType(obj, synapseName)
% -------------------------------------------------------------
obj.checkLinks();
T = obj.links(obj.links.SynapseType == synapseName, :);
end
end
methods (Access = protected)
function pull(obj)
[email protected](obj)
if obj.includeSynapses
obj.getSynapses();
end
if ~isempty(obj.links)
fprintf('\tUpdating links for c%u\n', obj.ID);
obj.getLinks();
end
end
end
methods (Access = protected)
function setupSynapses(obj)
% SETUPSYNAPSES
% TODO: This should be done elsewhere
import sbfsem.core.StructureTypes;
% Create a new column for "unique" synapses
% The purpose of this is having 1 marker per synapse structure
obj.nodes.Unique = zeros(height(obj.nodes), 1);
if ~isempty(obj.synapses)
% Init temporary variables to track nodes per synapse structure
numSynapseNodes = [];
for i = 1:height(obj.synapses) % For each synapse structre
% Find the nodes associated with the synapse
row = find(obj.nodes.ParentID == obj.synapses.ID(i));
numSynapseNodes = cat(1, numSynapseNodes, numel(row));
% Mark unique synapses, these will be plotted
if numel(row) > 1
% Get the median annotation (along the Z-axis)
% TODO: decide if this is best
ind = find(obj.nodes.Z(row,:) == floor(median(obj.nodes.Z(row,:))));
obj.nodes.Unique(row(ind),:) = 1; %#ok
elseif numel(row) == 1
obj.nodes.Unique(row, :) = 1;
end
end
obj.synapses.N = numSynapseNodes;
% Match the TypeID to the Viking StructureType
structures = sbfsem.builtin.VikingStructureTypes(obj.synapses.TypeID);
% Match to local StructureType
localNames = cell(numel(structures),1);
for i = 1:numel(structures)
localNames{i,:} = sbfsem.core.StructureTypes.fromViking(...
structures(i), obj.synapses.Tags{i,:});
end
obj.synapses.LocalName = vertcat(localNames{:});
% Make sure synapses match the new naming conventions
% FIXME: Add to sbfsem.builtin.Volumes
if ~ismember(obj.source, {'RC1', 'RPC1', 'RC2', 'RPC2'})
makeConsistent(obj);
end
end
end
end
end