forked from lgatto/physalia2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
S02-raw.R
228 lines (132 loc) · 3.95 KB
/
S02-raw.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
## Raw MS data
## binary - vendor-specific formats
## open formats: mzML, mzXML
## proteowizard msconvert: https://proteowizard.sourceforge.io/
##
## ThermoRawFileParser: https://github.com/compomics/ThermoRawFileParser
library(Spectra)
## data.frame
## tibble
spd <- DataFrame(msLevel = c(1L, 2L),
rtime = c(1.1, 1.2))
spd$mz <- list(
c(100, 103.3, 132, 210),
c(45, 100, 200)
)
spd$intensity <- list(
c(45, 12, 345, 20),
c(45, 122, 12)
)
sp <- Spectra(spd)
sp
## - spectraVariables() and spectraData()
## - peaksData()
## - sp[]
spectraVariables(sp)
spectraData(sp)
peaksData(sp)[[1]]
peaksData(sp)[[2]]
sp[c(1, 2, 1, 1)]
sp <- Spectra(f)
length(sp)
spectraVariables(sp)
pd <- peaksData(sp)
spectraVariables(sp)
msLevel(sp)
sp$msLevel
msLevel(sp)[[1234]]
plot(pd[[1234]], type = "h")
## How many MS level are there, and how many scans of each level?
table(msLevel(sp))
filterMsLevel(sp, 2L)
sp[msLevel(sp) == 2L]
## Extract the index of the MS2 spectrum with the highest base peak
## intensity.
sp2 <- filterMsLevel(sp, 2L)
sp2[which.max(sp2$basePeakIntensity)]
plotSpectra(sp2[4192])
plotSpectra(sp2[1234])
plotSpectra(sp2[1230])
plotSpectra(sp2[1230:1233])
plotSpectra(sp[1])
plotSpectra(sp[1:4])
## The chromatogram can be created by extracting the totIonCurrent and
## rtime variables for all MS1 spectra. Annotate the spectrum of
## interest.
spectraVariables(sp)
## plot(..., type = "l") ## line plot
## plot(..., type = "h") ## 'histogram' plot
plot(rtime(sp), tic(sp), type = "l")
plot(sp$rtime, sp$totIonCurrent, type = "l")
sp1 <- filterMsLevel(sp, 1L)
plot(rtime(sp1), tic(sp1), type = "l")
abline(v = rtime(sp)[2807], col = "red")
MsCoreUtils::formatRt(rtime(sp)[2800:2820])
sp[2807]
library(tidyverse)
spectraData(sp) |>
as.data.frame() |>
as_tibble() |>
filter(msLevel == 1) |>
ggplot(aes(x = rtime,
y = totIonCurrent)) +
geom_line()
## The filterPrecursorScan() function can be used to retain a set
## parent (MS1) and children scans (MS2), as defined by an acquisition
## number. Use it to extract the MS1 scan of interest and all its MS2
## children.
sp2 <- filterPrecursorScan(sp, 2807)
## Plot the MS1 spectrum of interest and highlight all the peaks that
## will be selected for MS2 analysis.
plotSpectra(sp2[1], xlim = c(400, 1000))
abline(v = precursorMz(sp2)[-1], col = "grey")
## Use plotSpectra() function to plot all 10 MS2 spectra in one call.
plotSpectra(sp2[-1])
plotSpectra(sp2[2:11])
plotSpectra(filterMsLevel(sp2, 2L))
## Focus of mz range
plotSpectra(sp[2807], xlim = c(521.2, 522.5))
plotSpectra(sp[2807], xlim = c(521.25, 521.4))
par(mfrow = c(2, 1))
## Processing
plotSpectra(sp[2807], xlim = c(521.2, 522.5))
Spectra::pickPeaks(sp[2807]) |>
filterIntensity(1e7) |>
plotSpectra(xlim = c(521.25, 522.5))
table(msLevel(sp), centroided(sp))
## More visualisation
plotSpectra(sp2[7],
xlim = c(126, 132))
mzLabel <- function(z) {
## z is an instance of class Spectra
z <- peaksData(z)[[1L]]
lab <- format(z[, "mz"], digits = 4)
lab[z[, "intensity"] < 1e5] <- ""
lab
}
plotSpectra(sp2[7],
labels = mzLabel,
xlim = c(126, 132))
sp2 <- filterMsLevel(sp, 2L)
anyDuplicated(precursorMz(sp2))
i <- which(precursorMz(sp2) == precursorMz(sp2)[37])
plotSpectra(sp2[i])
plotSpectraMirror(sp2[31], sp2[37])
plotSpectraOverlay(sp2[i], col = c("red", "steelblue"))
## BiocManager::install("RforMassSpectrometry/SpectraVis")
library(SpectraVis)
plotlySpectra(sp2[31])
browseSpectra(sp)
BiocManager::install("MsBackendMgf")
(fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE))
basename(fls)
sciex <- Spectra(fls)
dataOrigin(sciex)
table(dataOrigin(sciex))
####################################################3
library(mzR)
Spectra(f)
x <- openMSfile(f)
hd <- header(x) ## like spectraData from Spectra
pk <- mzR::peaks(x) ## like peaksData from Spectra
Spectra(DataFrame(hd))