-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
173 lines (154 loc) · 6.29 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import string
import torch
import torch.nn as nn
from torch import Tensor
import einops
class MultidimPositionalEmbedding(nn.Module):
def __init__(self, space_dims, embed_dim):
super().__init__()
if isinstance(space_dims, int): space_dims = (space_dims,)
self.pars = nn.ParameterList()
for i in range(len(space_dims)):
size = [int(1)] * len(space_dims)
size.append(embed_dim)
size[i] = space_dims[i]
self.pars.append(nn.Parameter(torch.empty(*size)))
nn.init.trunc_normal_(self.pars[i])
def forward(self, x):
for par in self.pars:
x = x + par
return x
class MultiHeadAttention(nn.Module):
def __init__(self, embed_dim: int, num_heads: int):
super().__init__()
self.embed_dim = embed_dim
self.ql = nn.Linear(embed_dim, embed_dim)
self.kl = nn.Linear(embed_dim, embed_dim)
self.vl = nn.Linear(embed_dim, embed_dim)
self.softmax = nn.Softmax(dim=-1)
self.scale = (embed_dim // num_heads) ** -0.5
self.num_heads = num_heads
self.project = nn.Linear(embed_dim, embed_dim)
def head_partition(self, x: Tensor) -> Tensor:
return einops.rearrange(x, '... n (nh ch) -> ... nh n ch', nh=self.num_heads)
def head_merging(self, x: Tensor) -> Tensor:
return einops.rearrange(x, '... nh n ch -> ... n (nh ch)')
def forward(self, x: Tensor, cross: Tensor = None) -> Tensor:
if cross == None: cross = x
q, k, v = self.ql(x), self.kl(cross), self.vl(cross)
q, k, v = map(self.head_partition, (q, k, v))
attention = q @ k.transpose(-1, -2) * self.scale
attention = self.softmax(attention)
out = attention @ v
out = self.head_merging(out)
out = self.project(out)
return out
class TransformerBlock(nn.Module):
def __init__(self, embed_dim: int, n_cross_attn_blocks: int = 0, num_heads: int = 4, mlp_hidden_dim: int = None):
super().__init__()
self.selfattn_norm = nn.LayerNorm(embed_dim)
self.selfattn = MultiHeadAttention(embed_dim, num_heads)
self.crossattn_norm = nn.ModuleList()
self.crossattn = nn.ModuleList()
for _ in range(n_cross_attn_blocks):
self.crossattn_norm.append(nn.LayerNorm(embed_dim))
self.crossattn.append(MultiHeadAttention(embed_dim, num_heads))
self.mlp_norm = nn.LayerNorm(embed_dim)
if not mlp_hidden_dim: mlp_hidden_dim = 4 * embed_dim
self.mlp = nn.Sequential(
nn.Linear(embed_dim, mlp_hidden_dim),
nn.GELU(),
nn.Linear(mlp_hidden_dim, embed_dim)
)
def forward(self, x: Tensor, cross: list[Tensor] = ()) -> Tensor:
assert len(cross) == len(self.crossattn)
out = x + self.selfattn(self.selfattn_norm(x))
for i in range(len(cross)):
out = out + self.crossattn[i](self.crossattn_norm[i](out), cross[i])
out = out + self.mlp(self.mlp_norm(out))
return out
class Transformer(nn.Module):
def __init__(self, input_dim: int, output_dim: int, input_size: tuple,
num_blocks: int, embed_dim: int, cross_n: int, num_heads: int = 4, mlp_hidden_dim: int = None,
rearrange_back=True):
super().__init__()
self.embedding = nn.Linear(input_dim, embed_dim)
self.rearrange_back = rearrange_back
self.input_size = input_size
self.pos_embed = MultidimPositionalEmbedding(input_size, embed_dim)
self.blocks = nn.ModuleList([TransformerBlock(embed_dim, cross_n, num_heads, mlp_hidden_dim)
for _ in range(num_blocks)])
self.final_projection = nn.Linear(embed_dim, output_dim)
def forward(self, x: Tensor, cross: list[Tensor] = ()) -> Tensor:
out = self.embedding(x)
out = self.pos_embed(out)
rec = {string.ascii_lowercase[i]: self.input_size[i] for i in range(len(self.input_size))}
reck = ' '.join(rec.keys())
out = einops.rearrange(out, f'... {reck} ed -> ... ({reck}) ed', **rec)
for block in self.blocks:
out = block(out, cross)
if self.rearrange_back:
out = einops.rearrange(out, f'... ({reck}) ed -> ... {reck} ed', **rec)
out = self.final_projection(out)
return out
if __name__ == '__main__':
print('Running transformer test')
def task_a():
def rep(x, t):
x = einops.repeat(torch.Tensor(x), '... -> l ... a', a=1, l=1)
return x
def inp(ed, s):
seq = torch.rand(s)
cr_0 = torch.rand(s)
cr_1 = torch.rand(s)
## A ##
ans = cr_0 - cr_1
seq *= 0
## B ##
# ans = seq.flip(0)
# for i in range(0, s, 3):
# ans[i] *= cr_0[i] - 0.5 * cr_1[(i + 1) % s]
# End
seq, cr_0, cr_1, ans = [rep(x, ed).clone() for x in [seq, cr_0, cr_1, ans]]
return seq, cr_0, cr_1, ans
def inpoup(b, ed, s):
acm = [[], [], [], []]
for _ in range(b):
n = inp(ed, s)
for i in range(len(acm)):
acm[i] += [n[i]]
for i in range(len(acm)):
acm[i] = torch.cat(acm[i])
return acm
return inpoup
inpoup = task_a()
b = 256
ed = 64
s = 16
tr = Transformer(1, 1, (s,), 10, ed, 2)
emp = Transformer(1, ed, (s,), 0, ed, 0)
try:
import matplotlib.pyplot as plt
import torchinfo
torchinfo.summary(tr)
except:
pass
optimizer = torch.optim.Adam({*tr.parameters(), *emp.parameters()}, 0.0002)
losses = []
for its in range(100000 + 1):
optimizer.zero_grad()
x, cross_0, cross_1, ans = inpoup(b, ed, s)
out = tr(x, (emp(cross_0), emp(cross_1)))
loss: Tensor = torch.nn.functional.mse_loss(out, ans)
loss.backward()
optimizer.step()
losses.append(loss.item())
if len(losses) % 10 == 0:
try:
plt.title(f'Loss: {losses[-1]}')
plt.plot(list(range(len(losses))), losses)
plt.ylim(0, 0.25)
plt.xlim(0, (len(losses) + 110) // 100 * 100)
plt.show()
except:
pass