-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclickme_prepare_maps_for_modeling.py
239 lines (206 loc) · 9.79 KB
/
clickme_prepare_maps_for_modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os, sys
import numpy as np
from PIL import Image
import json
import pandas as pd
from matplotlib import pyplot as plt
from src import utils
def sample_half_pos(point_lists, num_samples=100):
num_pos = {}
for image in point_lists:
sample_nums = []
for i in range(num_samples):
clickmaps = point_lists[image]
all_maps = []
map_indices = list(range(len(clickmaps)))
random_indices = np.random.choice(map_indices, int(len(clickmaps)//2))
s1 = []
s2 = []
for j, clickmap in enumerate(clickmaps):
if j in random_indices:
s1 += clickmap
else:
s2 += clickmap
sample_nums += [len(set(s1)), len(set(s2))]
num_pos[image] = np.mean(sample_nums)
return num_pos
def get_num_pos(point_lists):
num_pos = {}
for image in point_lists:
clickmaps = point_lists[image]
all_maps = []
for clickmap in clickmaps:
all_maps += clickmap
all_maps = set(all_maps)
num_pos[image] = len(all_maps)
return num_pos
def get_medians(point_lists, mode='image', thresh=50):
medians = {}
if mode == 'image':
for image in point_lists:
clickmaps = point_lists[image]
num_clicks = []
for clickmap in clickmaps:
num_clicks.append(len(clickmap))
medians[image] = np.percentile(num_clicks, thresh)
elif mode == 'category':
for image in point_lists:
category = image.split('/')[0]
if category not in medians.keys():
medians[category] = []
clickmaps = point_lists[image]
for clickmap in clickmaps:
medians[category].append(len(clickmap))
for category in medians:
medians[category] = np.percentile(medians[category], thresh)
elif mode == 'all':
num_clicks = []
for image in point_lists:
clickmaps = point_lists[image]
for clickmap in clickmaps:
num_clicks.append(len(clickmap))
medians['all'] = np.percentile(num_clicks, thresh)
else:
raise NotImplementedError(mode)
return medians
if __name__ == "__main__":
# Get config file
config_file = utils.get_config(sys.argv)
# Other Args
# blur_sigma_function = lambda x: np.sqrt(x)
# blur_sigma_function = lambda x: x / 2
blur_sigma_function = lambda x: x
# Load config
config = utils.process_config(config_file)
clickme_data = utils.process_clickme_data(
config["clickme_data"],
config["filter_mobile"])
output_dir = config["assets"]
image_output_dir = config["example_image_output_dir"]
blur_size = config["blur_size"]
blur_sigma = blur_sigma_function(blur_size)
min_pixels = (2 * blur_size) ** 2 # Minimum number of pixels for a map to be included following filtering
# Load metadata
if config["metadata_file"]:
metadata = np.load(config["metadata_file"], allow_pickle=True).item()
else:
metadata = None
# Start processing
os.makedirs(image_output_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
os.makedirs(os.path.join(output_dir, config["experiment_name"]), exist_ok=True)
# Process data in chunks to avoid memory issues
# Instead of loading all 5.3M+ images at once, process in manageable batches
print(f"Processing clickme data in chunks...")
# Determine whether to use parallel processing
# For very large datasets, sometimes serial processing with efficient chunking is faster
# due to reduced overhead and better memory management
chunk_size = 10000 # Adjust based on available memory
total_images = len(clickme_data)
# Create a function to process chunks of data
def process_chunk(chunk_start, chunk_end):
chunk_data = {k: clickme_data[k] for k in list(clickme_data.keys())[chunk_start:chunk_end]}
# Convert the dictionary to a DataFrame with the correct column name 'image_path'
# instead of 'image_name' to match what process_clickmap_files expects
chunk_df = pd.DataFrame([(k, v) for k, v in chunk_data.items()],
columns=['image_path', 'clicks'])
# Use serial processing for each chunk to avoid joblib overhead
process_clickmap_files_func = utils.process_clickmap_files
chunk_clickmaps, chunk_clickmap_counts = process_clickmap_files_func(
clickme_data=chunk_df, # Pass DataFrame instead of dictionary
image_path=config["image_path"],
file_inclusion_filter=config["file_inclusion_filter"],
file_exclusion_filter=config["file_exclusion_filter"],
min_clicks=config["min_clicks"],
max_clicks=config["max_clicks"])
# Apply all filters to the chunk
if config["class_filter_file"]:
chunk_clickmaps = utils.filter_classes(
clickmaps=chunk_clickmaps,
class_filter_file=config["class_filter_file"])
if config["participant_filter"]:
chunk_clickmaps = utils.filter_participants(chunk_clickmaps)
# Process maps for this chunk
prepare_maps_func = utils.prepare_maps # Use serial version for each chunk
chunk_final_clickmaps, chunk_all_clickmaps, chunk_categories, chunk_final_keep_index = prepare_maps_func(
final_clickmaps=chunk_clickmaps,
blur_size=blur_size,
blur_sigma=blur_sigma,
image_shape=config["image_shape"],
min_pixels=min_pixels,
min_subjects=config["min_subjects"],
metadata=metadata,
blur_sigma_function=blur_sigma_function,
center_crop=False)
# Apply mask filtering if needed
if config["mask_dir"]:
masks = utils.load_masks(config["mask_dir"])
chunk_final_clickmaps, chunk_all_clickmaps, chunk_categories, chunk_final_keep_index = utils.filter_for_foreground_masks(
final_clickmaps=chunk_final_clickmaps,
all_clickmaps=chunk_all_clickmaps,
categories=chunk_categories,
masks=masks,
mask_threshold=config["mask_threshold"])
# Process and save directly instead of accumulating
for j, img_name in enumerate(chunk_final_keep_index):
if not os.path.exists(os.path.join(config["image_path"], img_name)):
continue
hmp = chunk_all_clickmaps[j]
# Save directly to disk - don't accumulate in memory
np.save(
os.path.join(output_dir, config["experiment_name"], f"{img_name.replace('/', '_')}.npy"),
hmp
)
return chunk_final_clickmaps, chunk_all_clickmaps, chunk_categories, chunk_final_keep_index
# Process all data in chunks
all_final_clickmaps = {}
all_final_keep_index = []
# Use a simple progress tracking system
for chunk_start in range(0, total_images, chunk_size):
chunk_end = min(chunk_start + chunk_size, total_images)
print(f"Processing chunk {chunk_start//chunk_size + 1}/{(total_images + chunk_size - 1)//chunk_size} ({chunk_start}-{chunk_end})")
chunk_final_clickmaps, chunk_all_clickmaps, chunk_categories, chunk_final_keep_index = process_chunk(chunk_start, chunk_end)
# Merge results (keeping minimal data in memory)
all_final_clickmaps.update(chunk_final_clickmaps)
all_final_keep_index.extend(chunk_final_keep_index)
# Free memory
del chunk_final_clickmaps, chunk_all_clickmaps, chunk_categories
# Get median number of clicks from the combined results
percentile_thresh = config["percentile_thresh"]
medians = get_medians(all_final_clickmaps, 'image', thresh=percentile_thresh)
medians.update(get_medians(all_final_clickmaps, 'category', thresh=percentile_thresh))
medians.update(get_medians(all_final_clickmaps, 'all', thresh=percentile_thresh))
medians_json = json.dumps(medians, indent=4)
# Save medians
with open(os.path.join(output_dir, config["processed_medians"]), 'w') as f:
f.write(medians_json)
# Process visualization for display images if needed
if config["display_image_keys"]:
if config["display_image_keys"] == "auto":
sz_dict = {k: len(v) for k, v in all_final_clickmaps.items()}
arg = np.argsort(list(sz_dict.values()))
config["display_image_keys"] = np.asarray(list(sz_dict.keys()))[arg[-10:]]
print("Generating visualizations for display images...")
for img_name in config["display_image_keys"]:
# Find the corresponding heatmap
heatmap_path = os.path.join(output_dir, config["experiment_name"], f"{img_name.replace('/', '_')}.npy")
if not os.path.exists(heatmap_path):
print(f"Heatmap not found for {img_name}")
continue
hmp = np.load(heatmap_path)
img = Image.open(os.path.join(config["image_path"], img_name))
if metadata:
click_match = [k_ for k_ in all_final_clickmaps.keys() if img_name in k_]
if click_match:
metadata_size = metadata[click_match[0]]
img = img.resize(metadata_size)
# Save visualization
f = plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(np.asarray(img))
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(hmp.mean(0))
plt.axis("off")
plt.savefig(os.path.join(image_output_dir, img_name.replace('/', '_')))
plt.close()