-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_human_ceiling_hold_one_out.py
236 lines (208 loc) · 9.3 KB
/
compute_human_ceiling_hold_one_out.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os, sys
import numpy as np
from PIL import Image
from src import utils
from matplotlib import pyplot as plt
from tqdm import tqdm
from joblib import Parallel, delayed
def compute_inner_correlations(i, all_clickmaps, category_indices, metric):
category_index = category_indices[i]
inner_correlations = []
instance_correlations = {}
if i not in instance_correlations.keys():
instance_correlations[i] = []
# Reference map is the ith map
reference_map = all_clickmaps[i].mean(0)
reference_map = (reference_map - reference_map.min()) / (reference_map.max() - reference_map.min())
# Test map is a random subject from a different image
sub_vec = np.where(category_indices != category_index)[0]
rand_map = np.random.choice(sub_vec)
test_map = all_clickmaps[rand_map]
num_subs = len(test_map)
rand_sub = np.random.choice(num_subs)
test_map = test_map[rand_sub]
test_map = (test_map - test_map.min()) / (test_map.max() - test_map.min())
if metric.lower() == "crossentropy":
correlation = utils.compute_crossentropy(test_map, reference_map)
elif metric.lower() == "auc":
correlation = utils.compute_AUC(test_map, reference_map)
elif metric.lower() == "rsa":
correlation = utils.compute_RSA(test_map, reference_map)
elif metric.lower() == "spearman":
correlation = utils.compute_spearman_correlation(test_map, reference_map)
else:
raise ValueError(f"Invalid metric: {metric}")
inner_correlations.append(correlation)
instance_correlations[i].append(correlation)
return inner_correlations, instance_correlations
def main(
clickme_data,
clickme_image_folder,
debug=False,
blur_size=11 * 2,
blur_sigma=np.sqrt(11 * 2),
null_iterations=10,
image_shape=[256, 256],
center_crop=[224, 224],
min_pixels=30,
min_subjects=10,
min_clicks=10,
max_clicks=50,
metric="auc", # AUC, crossentropy, spearman, RSA
blur_sigma_function=None,
mask_dir=None,
mask_threshold=0.5,
class_filter_file=False,
participant_filter=False,
file_inclusion_filter=False,
file_exclusion_filter=False,
):
"""
Calculate split-half correlations for clickmaps across different image categories.
Args:
final_clickmaps (dict): A dictionary where keys are image identifiers and values
are lists of click trials for each image.
clickme_folder (str): Path to the folder containing the images.
n_splits (int): Number of splits to use in split-half correlation calculation.
debug (bool): If True, print debug information.
blur_size (int): Size of the Gaussian blur kernel.
blur_sigma (float): Sigma value for the Gaussian blur kernel.
image_shape (list): Shape of the image [height, width].
Returns:
tuple: A tuple containing two elements:
- dict: Category-wise mean correlations.
- list: All individual image correlations.
"""
assert blur_sigma_function is not None, "Blur sigma function needs to be provided."
# Process files in serial
clickmaps, _ = utils.process_clickmap_files(
clickme_data=clickme_data,
image_path=clickme_image_folder,
min_clicks=min_clicks,
max_clicks=max_clicks,
file_inclusion_filter=file_inclusion_filter,
file_exclusion_filter=file_exclusion_filter)
# Filter classes if requested
if class_filter_file:
clickmaps = utils.filter_classes(
clickmaps=clickmaps,
class_filter_file=class_filter_file)
# Filter participants if requested
if participant_filter:
clickmaps = utils.filter_participants(clickmaps)
# Prepare maps
final_clickmaps, all_clickmaps, categories, _ = utils.prepare_maps(
final_clickmaps=clickmaps,
blur_size=blur_size,
blur_sigma=blur_sigma,
image_shape=image_shape,
min_pixels=min_pixels,
min_subjects=min_subjects,
metadata=metadata,
blur_sigma_function=blur_sigma_function,
center_crop=center_crop)
if debug:
for imn in range(len(final_clickmaps)):
f = [x for x in final_clickmaps.keys()][imn]
image_path = os.path.join(clickme_image_folder, f)
image_data = Image.open(image_path)
for idx in range(min(len(all_clickmaps[imn]), 18)):
plt.subplot(4, 5, idx + 1)
plt.imshow(all_clickmaps[imn][np.argsort(all_clickmaps[imn].sum((1, 2)))[idx]])
plt.axis("off")
plt.subplot(4, 5, 20)
plt.subplot(4,5,19);plt.imshow(all_clickmaps[imn].mean(0))
plt.axis('off');plt.title("mean")
plt.subplot(4,5,20);plt.imshow(np.asarray(image_data)[16:-16, 16:-16]);plt.axis('off')
plt.show()
# Compute scores
all_correlations = []
for clickmaps in tqdm(all_clickmaps, desc="Processing ceiling", total=len(all_clickmaps)):
for i in range(len(clickmaps)):
test_map = clickmaps[i]
test_map = (test_map - test_map.min()) / (test_map.max() - test_map.min())
remaining_maps = clickmaps[~np.in1d(np.arange(len(clickmaps)), i)].mean(0)
remaining_maps = (remaining_maps - remaining_maps.min()) / (remaining_maps.max() - remaining_maps.min())
if metric.lower() == "crossentropy":
correlation = utils.compute_crossentropy(test_map, remaining_maps)
elif metric.lower() == "auc":
correlation = utils.compute_AUC(test_map, remaining_maps)
elif metric.lower() == "spearman":
correlation = utils.compute_spearman_correlation(test_map, remaining_maps)
else:
raise ValueError(f"Invalid metric: {metric}")
all_correlations.append(correlation)
all_correlations = np.asarray(all_correlations)
# Filter for foreground mask overlap if requested
if mask_dir:
masks = utils.load_masks(mask_dir)
final_clickmaps, all_clickmaps, categories, _ = utils.filter_for_foreground_masks(
final_clickmaps=final_clickmaps,
all_clickmaps=all_clickmaps,
categories=categories,
masks=masks,
mask_threshold=mask_threshold)
# Compute null scores
_, category_indices = np.unique(categories, return_inverse=True)
null_correlations = []
instance_correlations = {}
for _ in tqdm(range(null_iterations), total=null_iterations, desc="Computing null scores"):
results = Parallel(n_jobs=-1)(delayed(compute_inner_correlations)(i, all_clickmaps, category_indices, metric) for i in range(len(all_clickmaps)))
inner_correlations = [result[0] for result in results]
instance_correlations = {k: v for result in results for k, v in result[1].items()}
null_correlations.append(np.nanmean(inner_correlations))
null_correlations = np.asarray(null_correlations)
return final_clickmaps, instance_correlations, all_correlations, null_correlations, all_clickmaps
if __name__ == "__main__":
# Get config file
config_file = utils.get_config(sys.argv)
# Other Args
# blur_sigma_function = lambda x: np.sqrt(x)
# blur_sigma_function = lambda x: x / 2
blur_sigma_function = lambda x: x
# Load config
config = utils.process_config(config_file)
output_dir = config["assets"]
blur_size = config["blur_size"]
blur_sigma = np.sqrt(blur_size)
min_pixels = (2 * blur_size) ** 2 # Minimum number of pixels for a map to be included following filtering
# Load metadata
if config["metadata_file"]:
metadata = np.load(config["metadata_file"], allow_pickle=True).item()
else:
metadata = None
# Load data
clickme_data = utils.process_clickme_data(
config["clickme_data"],
config["filter_mobile"])
# Process data
final_clickmaps, instance_correlations, all_correlations, null_correlations, all_clickmaps = main(
clickme_data=clickme_data,
blur_sigma=blur_sigma,
min_pixels=min_pixels,
debug=config["debug"],
blur_size=blur_size,
clickme_image_folder=config["image_path"],
null_iterations=config["null_iterations"],
image_shape=config["image_shape"],
center_crop=config["center_crop"],
min_subjects=config["min_subjects"],
min_clicks=config["min_clicks"],
max_clicks=config["max_clicks"],
metric=config["metric"],
blur_sigma_function=blur_sigma_function,
mask_dir=config["mask_dir"],
mask_threshold=config["mask_threshold"],
class_filter_file=config["class_filter_file"],
participant_filter=config["participant_filter"],
file_inclusion_filter=config["file_inclusion_filter"],
file_exclusion_filter=config["file_exclusion_filter"])
print(f"Mean human correlation full set: {np.nanmean(all_correlations)}")
print(f"Null correlations full set: {np.nanmean(null_correlations)}")
np.savez(
os.path.join(output_dir, "human_ceiling_hold_one_out_{}.npz".format(config["experiment_name"])),
final_clickmaps=final_clickmaps,
ceiling_correlations=all_correlations,
null_correlations=null_correlations,
instance_correlations=instance_correlations,
)