-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcu2ho.m
95 lines (87 loc) · 2.28 KB
/
cu2ho.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
% from cubochoric to homochoric
function q = cu2ho(xyz,printQ)
arguments
xyz
printQ(1,1) logical = false
end
% rs = sqrt(sum(xyz.*xyz));
R1 = (3*pi/4)^(1/3);
aa = ((pi^5)/6)^(1/6);
bb = aa/2;
sc = aa/(pi^(2/3));
prek = R1*(2^0.25)/bb;
% ierr = 0;
if (max(abs(xyz)) > ((pi^(2/3)/2.0)+1e-8))
q = [0.0, 0.0, 0.0];
% ierr = 1;
return
end
% determine which pyramid pair the point lies in and copy coordinates in correct order (see paper)
if printQ
disp('GetPyramid')
end
p = GetPyramid(xyz);
if (p==1) || (p==2)
sXYZ = xyz;
elseif (p==3) || (p==4)
sXYZ = [xyz(2), xyz(3), xyz(1)];
else
sXYZ = [xyz(3), xyz(1), xyz(2)];
end
% select case (p)
% case (1,2)
% sXYZ = xyz
% case (3,4)
% sXYZ = (/ xyz(2), xyz(3), xyz(1) /)
% case (5,6)
% sXYZ = (/ xyz(3), xyz(1), xyz(2) /)
% end select
% scale by grid parameter ratio sc
XYZ = sc * sXYZ;
% transform to the sphere grid via the curved square, and intercept the zero point
if (max(abs(XYZ))== 0.0)
LamXYZ = [0.0, 0.0, 0.0];
else
% intercept all the points along the z-axis
if (max(abs(XYZ(1:2)))== 0.0)
LamXYZ = [0.0, 0.0, sqrt(6/pi)*XYZ(3)];
else % this is a general grid point
if (abs(XYZ(2))<= abs(XYZ(1)))
c = cos((pi/12)*XYZ(2)/XYZ(1));
s = sin((pi/12)*XYZ(2)/XYZ(1));
temp = prek * XYZ(1) / sqrt(sqrt(2)-c);
T1 = (sqrt(2)*c - 1.0) * temp;
T2 = sqrt(2) * s * temp;
else
c = cos((pi/12) * XYZ(1)/XYZ(2));
s = sin((pi/12) * XYZ(1)/XYZ(2));
temp = prek * XYZ(2) / sqrt(sqrt(2)-c);
T1 = sqrt(2) * s * temp;
T2 = (sqrt(2)*c - 1.0) * temp;
end
% transform to sphere grid (inverse Lambert)
% [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero]
c = T1^2+T2^2;
s = pi*c/(24.0*XYZ(3)^2);
c = sqrt(pi) * c / sqrt(24) / XYZ(3);
q = sqrt( 1.0 - s );
LamXYZ = [T1*q, T2*q, sqrt(6/pi)*XYZ(3)-c];
end
end
% reverse the coordinates back to the regular order according to the original pyramid number
if (p==1) || (p==2)
q = LamXYZ;
elseif (p==3) || (p==4)
q = [LamXYZ(3), LamXYZ(1), LamXYZ(2)];
else
q = [LamXYZ(2), LamXYZ(3), LamXYZ(1)];
end
% set values very close to 0 as 0
thr = 1e-7;
if (abs(q(1))-0)<thr
q(1)=0;
elseif (abs(q(2))-0)<thr
q(2)=0;
elseif (abs(q(3))-0)<thr
q(3)=0;
end