|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +from django.http import HttpResponse |
| 3 | + |
| 4 | +import numpy as np |
| 5 | + |
| 6 | +import matplotlib |
| 7 | + |
| 8 | +from matplotlib.pyplot import get_cmap, colorbar, legend |
| 9 | +import matplotlib.pyplot as plt |
| 10 | +from matplotlib.backends.backend_agg import FigureCanvasAgg |
| 11 | + |
| 12 | +from wms import logger |
| 13 | + |
| 14 | +from matplotlib import rcParams |
| 15 | +rcParams['font.family'] = 'sans-serif' |
| 16 | +rcParams['font.sans-serif'] = ['Bitstream Vera Sans'] |
| 17 | +rcParams['font.serif'] = ['Bitstream Vera Sans'] |
| 18 | +rcParams['font.size'] = '10' |
| 19 | +rcParams['figure.autolayout'] = True |
| 20 | +rcParams['savefig.dpi'] = 72. |
| 21 | + |
| 22 | + |
| 23 | +def create_axis(request, position=None): |
| 24 | + position = position or [0, 0, 1, 1] |
| 25 | + # Create figure |
| 26 | + plt.close('all') |
| 27 | + dpi = 72. |
| 28 | + width = int(request.GET['width']) |
| 29 | + height = int(request.GET['height']) |
| 30 | + fig = plt.figure(dpi=dpi, figsize=(width / dpi, height / dpi), facecolor=None, edgecolor=None, frameon=False, tight_layout=True) |
| 31 | + fig.set_alpha(0) |
| 32 | + ax = fig.add_axes(position) |
| 33 | + |
| 34 | + csr = request.GET['colorscalerange'] |
| 35 | + if request.GET['logscale'] is True: |
| 36 | + norm = matplotlib.colors.LogNorm(vmin=csr.min, vmax=csr.max, clip=False) |
| 37 | + else: |
| 38 | + norm = matplotlib.colors.Normalize(vmin=csr.min, vmax=csr.max, clip=False) |
| 39 | + |
| 40 | + return fig, ax, norm |
| 41 | + |
| 42 | + |
| 43 | +def figure_response(fig, request, adjust=None, **kwargs): |
| 44 | + |
| 45 | + canvas = FigureCanvasAgg(fig) |
| 46 | + response = HttpResponse(content_type='image/png') |
| 47 | + canvas.print_png(response, bbox_inches='tight', pad_inches=0.1, **kwargs) |
| 48 | + return response |
| 49 | + |
| 50 | + |
| 51 | +def get_position(request): |
| 52 | + if request.GET['horizontal'] is True: |
| 53 | + base = [0.08, 0.5, 0.8, 0.4] |
| 54 | + if request.GET['showlabel'] is False: |
| 55 | + base[3] += 0.1 |
| 56 | + if request.GET['showvalues'] is False: |
| 57 | + base[3] += 0.2 |
| 58 | + else: |
| 59 | + base = [0.05, 0.1, 0.4, 0.8] |
| 60 | + if request.GET['showlabel'] is False: |
| 61 | + base[2] += 0.1 |
| 62 | + if request.GET['showvalues'] is False: |
| 63 | + base[2] += 0.2 |
| 64 | + |
| 65 | + return base |
| 66 | + |
| 67 | + |
| 68 | +def filledcontour(request): |
| 69 | + # Create figure |
| 70 | + fig, ax, norm = create_axis(request, get_position(request)) |
| 71 | + |
| 72 | + orientation = 'vertical' |
| 73 | + if request.GET['horizontal'] is True: |
| 74 | + orientation = 'horizontal' |
| 75 | + csr = request.GET['colorscalerange'] |
| 76 | + |
| 77 | + if request.GET['logscale'] is True: |
| 78 | + levs = np.hstack(([csr.min-3], np.linspace(csr.min, csr.max, request.GET['numcontours']), [csr.max+40])) |
| 79 | + x, y = np.meshgrid(np.arange(1), np.arange(1)) |
| 80 | + cs = ax.contourf(x, y, x, levels=levs, norm=norm, cmap=get_cmap(request.GET['colormap'])) |
| 81 | + cb = colorbar(mappable=cs, cax=ax, orientation=orientation, spacing='proportional', extendrect=False, use_gridspec=True) |
| 82 | + if request.GET['showvalues'] is False: |
| 83 | + cb.set_ticks([]) |
| 84 | + else: |
| 85 | + cb.set_ticks(levs[1:-1]) |
| 86 | + cb.set_ticklabels([ "%.1f" % x for x in levs[1:-1] ]) |
| 87 | + |
| 88 | + else: |
| 89 | + levs = np.linspace(csr.min, csr.max, request.GET['numcontours']) |
| 90 | + x, y = np.meshgrid(np.arange(1), np.arange(1)) |
| 91 | + cs = ax.contourf(x, y, x, levels=levs, norm=norm, cmap=get_cmap(request.GET['colormap']), extend='both') |
| 92 | + cb = colorbar(mappable=cs, cax=ax, orientation=orientation, spacing='proportional', extendrect=False, use_gridspec=True) |
| 93 | + if request.GET['showvalues'] is False: |
| 94 | + cb.set_ticks([]) |
| 95 | + else: |
| 96 | + cb.set_ticks(levs) |
| 97 | + cb.set_ticklabels([ "%.1f" % x for x in levs ]) |
| 98 | + |
| 99 | + if request.GET['showlabel'] is True: |
| 100 | + cb.set_label(request.GET['units']) |
| 101 | + |
| 102 | + # Return HttpResponse |
| 103 | + return figure_response(fig, request) |
| 104 | + |
| 105 | + |
| 106 | +def contour(request): |
| 107 | + |
| 108 | + # Create figure |
| 109 | + fig, ax, norm = create_axis(request) |
| 110 | + ax.set_axis_off() |
| 111 | + |
| 112 | + csr = request.GET['colorscalerange'] |
| 113 | + |
| 114 | + if request.GET['logscale'] is True: |
| 115 | + levs = np.hstack(([csr.min-1], np.linspace(csr.min, csr.max, request.GET['numcontours']), [csr.max+1])) |
| 116 | + levs_labels = [ "%.1f" % x for x in levs[1:-1] ] |
| 117 | + if request.GET['showvalues'] is False: |
| 118 | + levs_labels = [ '' for x in range(levs.size-2) ] |
| 119 | + x, y = np.meshgrid(np.arange(1), np.arange(1)) |
| 120 | + cs = ax.contourf(x, y, x, levels=levs, norm=norm, cmap=get_cmap(request.GET['colormap'])) |
| 121 | + proxy = [plt.Rectangle((0, 0), 0, 0, fc=pc.get_facecolor()[0]) for pc in cs.collections] |
| 122 | + |
| 123 | + else: |
| 124 | + levs = np.linspace(csr.min, csr.max, request.GET['numcontours']) |
| 125 | + levs_labels = [ "%.1f" % x for x in levs ] |
| 126 | + if request.GET['showvalues'] is False: |
| 127 | + levs_labels = [ '' for x in range(levs.size) ] |
| 128 | + x, y = np.meshgrid(np.arange(1), np.arange(1)) |
| 129 | + cs = ax.contourf(x, y, x, levels=levs, norm=norm, cmap=get_cmap(request.GET['colormap']), extend='max') |
| 130 | + proxy = [plt.Rectangle((0, 0), 0, 0, fc=pc.get_facecolor()[0]) for pc in cs.collections] |
| 131 | + |
| 132 | + params = dict() |
| 133 | + if request.GET['horizontal'] is True: |
| 134 | + columns = 5 |
| 135 | + if request.GET['numcontours'] > 20: |
| 136 | + columns = request.GET['numcontours'] / 10 |
| 137 | + params = dict(labelspacing=0, mode="expand", ncol=columns) |
| 138 | + |
| 139 | + cb = legend(proxy, levs_labels, loc=10, borderaxespad=0., frameon=False, **params) |
| 140 | + |
| 141 | + if request.GET['showlabel'] is True: |
| 142 | + cb.set_title(request.GET['units']) |
| 143 | + |
| 144 | + # Return HttpResponse |
| 145 | + return figure_response(fig, request, bbox_extra_artists=(cb,)) |
| 146 | + |
| 147 | + |
| 148 | +def vector(request): |
| 149 | + raise NotImplementedError |
| 150 | + |
| 151 | + |
| 152 | +def barb(request): |
| 153 | + raise NotImplementedError |
| 154 | + |
| 155 | + |
| 156 | +def gradiant(request): |
| 157 | + # Create figure |
| 158 | + fig, ax, norm = create_axis(request, get_position(request)) |
| 159 | + |
| 160 | + orientation = 'vertical' |
| 161 | + if request.GET['horizontal'] is True: |
| 162 | + orientation = 'horizontal' |
| 163 | + cb = matplotlib.colorbar.ColorbarBase(ax, cmap=get_cmap(request.GET['colormap']), norm=norm, orientation=orientation) |
| 164 | + |
| 165 | + if request.GET['showvalues'] is False: |
| 166 | + cb.set_ticks([]) |
| 167 | + else: |
| 168 | + csr = request.GET['colorscalerange'] |
| 169 | + ticks = np.linspace(csr.min, csr.max, 5) |
| 170 | + cb.set_ticks(ticks) |
| 171 | + cb.set_ticklabels([ "%.1f" % x for x in ticks ]) |
| 172 | + |
| 173 | + if request.GET['showlabel'] is True: |
| 174 | + cb.set_label(request.GET['units']) |
| 175 | + |
| 176 | + # Return HttpResponse |
| 177 | + return figure_response(fig, request) |
0 commit comments