-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiments.py
121 lines (109 loc) · 4.56 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Obtained from: https://github.com/lhoyer/DAFormer
# Modifications: Add startup test
import argparse
import json
import logging
import os
import subprocess
import uuid
from datetime import datetime
import torch
from experiments import generate_experiment_cfgs
from mmcv import Config, get_git_hash
from tools import train
def run_command(command):
p = subprocess.Popen(
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
for line in iter(p.stdout.readline, b''):
print(line.decode('utf-8'), end='')
def rsync(src, dst):
rsync_cmd = f'rsync -a {src} {dst}'
print(rsync_cmd)
run_command(rsync_cmd)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
'--exp',
type=int,
default=None,
help='Experiment id as defined in experiment.py',
)
group.add_argument(
'--config',
default=None,
help='Path to config file',
)
parser.add_argument(
'--machine', type=str, choices=['local'], default='local')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--startup-test', action='store_true')
parser.add_argument('--source_dataset', default='data/gta/images', help='path to source dataset and labels')
parser.add_argument('--seed', default=0, type=int, help='seed of current run')
args = parser.parse_args()
assert (args.config is None) != (args.exp is None), \
'Either config or exp has to be defined.'
GEN_CONFIG_DIR = 'configs/generated/'
JOB_DIR = 'jobs'
cfgs, config_files = [], []
# Training with Predefined Config
if args.config is not None:
cfg = Config.fromfile(args.config)
# Specify Name and Work Directory
exp_name = f'{args.machine}-{cfg["exp"]}'
unique_name = f'{datetime.now().strftime("%y%m%d_%H%M")}_' \
f'{cfg["name"]}_{str(uuid.uuid4())[:5]}'
child_cfg = {
'_base_': args.config.replace('configs', '../..'),
'name': unique_name,
'work_dir': os.path.join('work_dirs', exp_name, unique_name),
'git_rev': get_git_hash()
}
cfg_out_file = f"{GEN_CONFIG_DIR}/{exp_name}/{child_cfg['name']}.json"
os.makedirs(os.path.dirname(cfg_out_file), exist_ok=True)
assert not os.path.isfile(cfg_out_file)
with open(cfg_out_file, 'w') as of:
json.dump(child_cfg, of, indent=4)
config_files.append(cfg_out_file)
cfgs.append(cfg)
# Training with Generated Configs from experiments.py
if args.exp is not None:
exp_name = f'{args.machine}-exp{args.exp}'
if args.startup_test:
exp_name += '-startup'
cfgs = generate_experiment_cfgs(args.exp)
# Generate Configs
for i, cfg in enumerate(cfgs):
if args.debug:
cfg.setdefault('log_config', {})['interval'] = 10
cfg['evaluation'] = dict(interval=200, metric='mIoU')
if 'dacs' in cfg['name']:
cfg.setdefault('uda', {})['debug_img_interval'] = 10
# cfg.setdefault('uda', {})['print_grad_magnitude'] = True
if args.startup_test:
cfg['log_level'] = logging.ERROR
cfg['runner'] = dict(type='IterBasedRunner', max_iters=2)
cfg['evaluation']['interval'] = 100
cfg['checkpoint_config'] = dict(
by_epoch=False, interval=100, save_last=False)
# Generate Config File
cfg['name'] = f'{datetime.now().strftime("%y%m%d_%H%M")}_' \
f'{cfg["name"]}_{str(uuid.uuid4())[:5]}'
cfg['work_dir'] = os.path.join('work_dirs', exp_name, cfg['name'])
cfg['git_rev'] = get_git_hash()
cfg['_base_'] = ['../../' + e for e in cfg['_base_']]
cfg_out_file = f"{GEN_CONFIG_DIR}/{exp_name}/{cfg['name']}.json"
os.makedirs(os.path.dirname(cfg_out_file), exist_ok=True)
assert not os.path.isfile(cfg_out_file)
with open(cfg_out_file, 'w') as of:
json.dump(cfg, of, indent=4)
config_files.append(cfg_out_file)
if args.machine == 'local':
for i, cfg in enumerate(cfgs):
if args.startup_test and cfg['seed'] != 0:
continue
print('Run job {}'.format(cfg['name']))
train.main([config_files[i]], args)
torch.cuda.empty_cache()
else:
raise NotImplementedError(args.machine)