In this notebook, I will focus on the cleaning and transformation of H-1B disclosure data for the period 2011-2016. Let's begin by loading the relevant libraries.
library(dplyr)
library(ggplot2)
library(readxl)
library(hashmap)
#Empty data frame
h1b_df = data.frame()
for(year in seq(2016,2011)) {
print(paste0("Reading ", year, " records .."))
raw_data_path = paste0("./data/",year,"_raw_data.xlsx")
new_df = read_excel(raw_data_path)
print(paste0("Raw data size: ", as.character(dim(new_df))))
# Changing column names of data before 2015
print("Column matching ..")
if(year != 2015 & year != 2016){
new_df = new_df %>%
mutate(CASE_NUMBER = LCA_CASE_NUMBER,
CASE_STATUS = STATUS,
EMPLOYER_NAME = LCA_CASE_EMPLOYER_NAME,
SOC_NAME = LCA_CASE_SOC_NAME,
SOC_CODE = LCA_CASE_SOC_CODE,
JOB_TITLE = LCA_CASE_JOB_TITLE,
FULL_TIME_POSITION = FULL_TIME_POS,
PREVAILING_WAGE = PW_1,
PW_UNIT_OF_PAY = PW_UNIT_1,
WORKSITE_CITY = LCA_CASE_WORKLOC1_CITY,
WORKSITE_STATE = LCA_CASE_WORKLOC1_STATE)
}
# Adding Year column to dataframe
print("Mutating year ..")
new_df = new_df %>%
mutate(YEAR = as.character(year))
print(paste0("Mutated data size: ", as.character(dim(new_df))))
# Selecting only the relevant columns
new_df = new_df %>%
select(CASE_NUMBER,
CASE_STATUS,
EMPLOYER_NAME,
SOC_NAME,
SOC_CODE,
JOB_TITLE,
FULL_TIME_POSITION,
PREVAILING_WAGE,
PW_UNIT_OF_PAY,
WORKSITE_CITY,
WORKSITE_STATE,
YEAR)
# Merging data with already transformed data
print("Merging data ..")
h1b_df = rbind(h1b_df, new_df)
print(paste0("Merged data size: ",as.character(dim(h1b_df))))
}
I save this dataframe before any transformations for backup.
# Saving read data frame
saveRDS(h1b_df,"h1b_df_no_transform.rds")
# h1b_df_tx will undergo all transformations
h1b_df_tx <- h1b_df
colnames(h1b_df_tx)
## [1] "CASE_NUMBER" "CASE_STATUS" "EMPLOYER_NAME"
## [4] "SOC_NAME" "SOC_CODE" "JOB_TITLE"
## [7] "FULL_TIME_POSITION" "PREVAILING_WAGE" "PW_UNIT_OF_PAY"
## [10] "WORKSITE_CITY" "WORKSITE_STATE" "YEAR"
Next, I perform the data transformations on the raw dataset.
To compare wages of any two records in our data set, we first need to convert them to the same time scale of payment. In our records, the following values of payment rate exist:h1b_df_tx %>%
group_by(PW_UNIT_OF_PAY) %>%
summarise(count = n(), percentage = 100*count/(dim(h1b_df_tx)[1]))
## # A tibble: 6 × 3
## PW_UNIT_OF_PAY count percentage
## <chr> <int> <dbl>
## 1 Bi-Weekly 320 0.01065552
## 2 Hour 232140 7.72991708
## 3 Month 3381 0.11258228
## 4 Week 1616 0.05381040
## 5 Year 2764988 92.06999214
## 6 <NA> 692 0.02304257
While 92% of the records provide Wage at the Year scale, 7.73% provide the information at Hour scale. As only 0.02% of the records have missing information, I remove such records from further analysis. For the remaining records, I convert them to the Year scale.
pw_unit_to_yearly <- function(prevailing_wage, pw_unit_of_pay) {
return(ifelse(pw_unit_of_pay == "Year",
prevailing_wage,
ifelse(pw_unit_of_pay == "Hour",
2080*prevailing_wage,
ifelse(pw_unit_of_pay== "Week",
52*prevailing_wage,
ifelse(pw_unit_of_pay == "Month",
12*prevailing_wage,
26*prevailing_wage)))))
}
h1b_df_tx %>%
filter(!is.na(PW_UNIT_OF_PAY)) %>%
mutate(PREVAILING_WAGE = as.numeric(PREVAILING_WAGE)) %>%
mutate(PREVAILING_WAGE = pw_unit_to_yearly(PREVAILING_WAGE, PW_UNIT_OF_PAY)) %>%
select(- PW_UNIT_OF_PAY) -> h1b_df_tx
h1b_df_tx %>%
group_by(FULL_TIME_POSITION) %>%
summarise(count = n(),percentage = 100*count/(dim(h1b_df_tx)[1]))
## # A tibble: 3 × 3
## FULL_TIME_POSITION count percentage
## <chr> <int> <dbl>
## 1 N 75183 2.504059
## 2 Y 2279443 75.919559
## 3 <NA> 647819 21.576382
Interestingly, 21.6% of the records have missing values regarding the Full Time Position. For filling the missing values, I analyze the relationship of the Prevailing Wage with Full Time Position across the years.
# Generic ggplot graphics configuration I will be using for all my plots
get_theme <- function() {
return(theme(axis.title = element_text(size = rel(1.5)),
legend.position = "bottom",
legend.text = element_text(size = rel(1.5)),
legend.title = element_text(size=rel(1.5)),
axis.text = element_text(size=rel(1.5))))
}
# Avoid scientific notation in plot
options(scipen = 999)
g <- ggplot(data = h1b_df_tx, aes(x=YEAR, y = PREVAILING_WAGE))
g <- g + geom_boxplot(aes(fill=FULL_TIME_POSITION)) + coord_cartesian(ylim=c(0,125000))
g <- g + xlab("YEAR") + ylab("WAGE (USD)") + get_theme()
g
## Warning: Removed 72 rows containing non-finite values (stat_boxplot).
Observations:
- 100% of the records from 2016 have missing values.
- Expectedly, the median wage for Full time positions are higher than for part-time positions.
h1b_df_tx %>%
group_by(FULL_TIME_POSITION) %>%
summarise('75%' = quantile(PREVAILING_WAGE,probs = 0.75,na.rm=TRUE))
## # A tibble: 3 × 2
## FULL_TIME_POSITION `75%`
## <chr> <dbl>
## 1 N 69617.6
## 2 Y 80600.0
## 3 <NA> 85176.0
Based on the 75% percentile value for Part-Time positions, I select 70000 as the Prevailing Wage cut-off for Full-Time positions with missing values. Accordingly, the missing values are filled.
h1b_df_tx %>%
mutate(FULL_TIME_POSITION = ifelse(is.na(FULL_TIME_POSITION),
ifelse(PREVAILING_WAGE > 70000,'Y','N'),
FULL_TIME_POSITION)) -> h1b_df_tx
-
Separating the state from Worksite City
-
Mutating a Full State Name for the Abbreviated State Names
-
Combining Worksite City with Worksite State Abbr.
-
Spell Checking and Correcting Spelling Errors using Probabilistic Model
-
Finding Geocodes for the different Worksites in our dataset (Lat, Long)
-
Merging Cost of Living Index data for top cities with our dataframe
I begin by separating the state from City by extracting only the first part of the WORKSITE_CITY value before the comma separator.
``` r split_first <- function(word, split = " ") { return(strsplit(word,split= split)[[1]][1]) }h1b_df_tx$WORKSITE_CITY <- sapply(h1b_df_tx$WORKSITE_CITY,split_first, split=",")
Next, we map the WORKSITE\_STATE which is currently in abbreviated format to the full name of the state.
``` r
#read 52 state codes into local variable [includes DC (Washington D.C. and PR (Puerto Rico)]
state_abbs = c("AK", "AL", "AR", "AZ", "CA", "CO", "CT", "DC", "DE", "FL", "GA",
"HI", "IA", "ID", "IL", "IN", "KS", "KY", "LA", "MA", "MD", "ME",
"MI", "MN", "MO", "MS", "MT", "NC", "ND", "NE", "NH", "NJ", "NM",
"NV", "NY", "OH", "OK", "OR", "PA", "PR", "RI", "SC", "SD", "TN",
"TX", "UT", "VA", "VT", "WA", "WI", "WV", "WY")
state_full = c("alaska","alabama","arkansas","arizona","california","colorado",
"connecticut","district of columbia","delaware","florida","georgia",
"hawaii","iowa","idaho","illinois","indiana","kansas","kentucky",
"louisiana","massachusetts","maryland","maine","michigan","minnesota",
"missouri","mississippi","montana","north carolina","north dakota",
"nebraska","new hampshire","new jersey","new mexico","nevada",
"new york","ohio","oklahoma","oregon","pennsylvania","puerto rico",
"rhode island","south carolina","south dakota","tennessee","texas",
"utah","virginia","vermont","washington","wisconsin",
"west virginia","wyoming")
state_hash = hashmap(state_abbs,state_full)
I have created a hash map between state abbreviations and state full names.
h1b_df_tx$WORKSITE_STATE_FULL = sapply(h1b_df_tx$WORKSITE_STATE, function(x,y) {return(toupper(y[[x]]))}, y = state_hash)
Next, I rename the WORKSITE_STATE TO WORKSITE_STATE_ABB. Then, I merge WORKSITE_STATE_FULL with the WORKSITE_CITY to form a new feature WORKSITE. This merge is performed because the same WORKSITE_CITY value might be present for multiple worksite states. For e.g., Houston is present in both Texas and California. To differentiate such locations, the merge is required.
site_merge <- function(x,y) {
return(paste0(x,", ",y))
}
h1b_df_tx %>%
rename(WORKSITE_STATE_ABB = WORKSITE_STATE) -> h1b_df_tx
h1b_df_tx$WORKSITE = mapply(site_merge,h1b_df_tx$WORKSITE_CITY,h1b_df_tx$WORKSITE_STATE_FULL)
h1b_df_tx %>% filter(WORKSITE %in% wrong_names) %>% group_by(WORKSITE) %>% summarise(count = n())
## # A tibble: 3 × 2
## WORKSITE count
## <chr> <int>
## 1 NEW YROK, NEW YORK 16
## 2 SAN FRANSISCO, CALIFORNIA 82
## 3 SUUNYVALE, CALIFORNIA 11
We can observe that there exist Worksite values that have spelling errors. Next, I implement a probabilistic spell-correcter that corrects Worksite values with errors at a maximum of distance.
Before the spell corrector implementation, I first create a hash map of Worksite values and the corresponding counts.
``` r
h1b_df_tx %>%
group_by(WORKSITE) %>%
summarise(count = n()) %>%
arrange(desc(count)) -> sites_count
site_hash = hashmap(sites_count$WORKSITE, sites_count$count)
Next, the spell-correcter is implemented extending the Python implementation described at http://norvig.com/spell-correct.html
get_inserts <- function(split_left,split_right, i, letters) {
# Generate insertions of a single letter
return(unlist(sapply(letters, function(left,right,c) {return(paste0(left, c, right))}, left = split_left[i], right = split_right[i])))
}
get_deletes <- function(split_left,split_right, i) {
# Generate deletion of one letter from word
return(paste0(split_left[i], substr(split_right[i],2,nchar(split_right[i]))))
}
get_replaces <- function(split_left,split_right, i,letters) {
# Generate replacement of a letter by a-z or space
if(!is.null(split_right[i]) & nchar(split_right[i]) > 0) {
return(unlist(sapply(letters, function(left,right,c) {return(paste0(left, c, right))}, left = split_left[i], right = substr(split_right[i],2,nchar(split_right[i])))))
}
return(NULL)
}
get_transposes <- function(split_left, split_right,i) {
# Generate interchanging of the positions of adjacent letters
if(!is.null(split_right[i]) & nchar(split_right[i]) > 1) {
return(paste0(split_left[i],substr(split_right[i],2,2),substr(split_right[i],1,1),substr(split_right[i],3,nchar(split_right[i]))))
}
return(NULL)
}
edits1site <- function(site) {
# All edits that are one edit away from site
letters = toupper(strsplit("abcdefghijklmnopqrstuvwxyz ",split='')[[1]])
site_len <- nchar(site)
#print(site_len)
if(site_len < 4) {
return(site)
}
split_left <- sapply(seq(0,site_len), substr,x = site,start = 1)
split_right <- sapply(seq(1,site_len+1), substr,x = site,stop = site_len)
deletes <- sapply(seq(1,site_len+1),get_deletes, split_left = split_left, split_right = split_right)
transposes <- unlist(sapply(seq(1,site_len+1),get_transposes, split_left = split_left, split_right = split_right))
replaces <- unlist(sapply(seq(1,site_len+1),get_replaces, split_left = split_left, split_right = split_right, letters=letters))
inserts <- unlist(sapply(seq(1,site_len+1),get_inserts, split_left = split_left, split_right = split_right,letters = letters))
return(unique(c(deletes,transposes,replaces,inserts)))
}
edits2site <- function(site) {
# All edits that are two edits away from `word`
edits1_sites = edits1site(site)
return (unlist(sapply(edits1_sites, edits1site)))
}
get_prob <- function(site, site_hash) {
# probability of site in our dataset
return(site_hash[[site]])
}
known <- function(sites,site_hash = site_hash) {
# The subset of candidate sites that appear in the dictionary of sites
return(sites[site_hash$has_keys(sites)])
}
find_candidates <- function(site,...) {
# Generate possible spelling corrections for word
return(c(known(site,...), known(edits1site(site),...), c(site)))
}
site_spell_correcter <- function(site,...) {
# best possible correction to the site
candidates = find_candidates(site,...)
best_candi = candidates[which.max(sapply(candidates,get_prob, ...))]
#if(get_prob(best_candi,...) > get_prob(site,...) ) {
# return(best_candi)
#}
return(best_candi)
}
site_count <- function(site, site_hash) {
if(site_hash$has_key(site)) {
return(site_hash[[site]])
}
return(site)
}
Using the above implementation, I obtain the corrected form of Worksite names next.
sites <- sites_count$WORKSITE
sites_before <- c()
sites_after <- c()
count <- 0
for(site in sites) {
# Count of current Worksite
curr_count <- site_count(site,site_hash)
#print(paste0(site, ", ",curr_count))
if(curr_count < 100) { # Threshold
#print(paste0(site, ", ",curr_count))
corrected <- site_spell_correcter(site,site_hash)
if(corrected != site) { # Correction occurred
count <- count + 1
sites_before[count] <- site
sites_after[count] <- corrected
corrected_count <- site_count(corrected,site_hash)
#print(paste0(site, " : ", curr_count,", ",corrected, " : ", corrected_count))
}
}
}
sites_corrected_hash <- hashmap(sites_before,sites_after)
print(paste0("Number of worksite spelling corrections: ", length(sites_after)))
## [1] "Number of worksite spelling corrections: 5828"
Now, I've obtained the corrected versions of the Worksite values. Let's merge the corrections to our data frame.
worksite_correct <- function(x, hash) {
if(hash$has_key(x)) {
return(hash[[x]])
}
return(x)
}
h1b_df_tx$WORKSITE_CORRECTED <- sapply(h1b_df_tx$WORKSITE,worksite_correct,hash=sites_corrected_hash)
h1b_df_tx %>%
select(-WORKSITE) %>%
rename(WORKSITE = WORKSITE_CORRECTED) -> h1b_df_tx
ggmap package provides a convenient way of finding out the geocodes of our Worksite values. However, there is a 2500 request limit per day. Therefore, for this example, I will find out the geocode only for the top 2500 worksites based on number of H-1B applications observed in our dataset. Let's begin by finding out those worksites! We have already created "sites_count"" dataframe in the descending order of number of applications for each worksite.
library(ggmap)
## Google Maps API Terms of Service: http://developers.google.com/maps/terms.
## Please cite ggmap if you use it: see citation("ggmap") for details.
top_sites <- (sites_count$WORKSITE)[1:2500]
site_geocodes <- cbind(geocode(top_sites),top_sites)
Obtaining the geocodes took a significant time close to an hour. Let's save the geocodes so this action need not be performed again.
site_geocodes %>%
rename(WORKSITE = top_sites) -> site_geocodes
saveRDS(site_geocodes,"geocodes.RDS")
Let's look at how much percentage of the dataset records is captured by the worksites for which geocodes were obtained.
N_sites_geocoded <- dim(site_geocodes)[1]
share <- 100*sum((sites_count$count)[1:N_sites_geocoded])/(dim(h1b_df_tx)[1])
print(paste0("Records captured by geocoded sites: ", share))
## [1] "Records captured by geocoded sites: 95.9587935832297"
Geocodes have been found for 96.47% of the records in our dataset inspite of not finding the geocodes for every unique Worksite value. Let's merge the geocode info with our main dataframe.
h1b_df_tx <- full_join(h1b_df_tx,site_geocodes,by="WORKSITE")
## Warning in full_join_impl(x, y, by$x, by$y, suffix$x, suffix$y): joining
## factor and character vector, coercing into character vector
head(h1b_df_tx)
## # A tibble: 6 × 15
## CASE_NUMBER CASE_STATUS
## <chr> <chr>
## 1 I-200-12240-490687 CERTIFIED-WITHDRAWN
## 2 I-200-13053-847481 CERTIFIED-WITHDRAWN
## 3 I-200-13088-054259 CERTIFIED-WITHDRAWN
## 4 I-200-13144-034110 CERTIFIED-WITHDRAWN
## 5 I-200-13172-415116 WITHDRAWN
## 6 I-200-13219-306739 CERTIFIED-WITHDRAWN
## # ... with 13 more variables: EMPLOYER_NAME <chr>, SOC_NAME <chr>,
## # SOC_CODE <chr>, JOB_TITLE <chr>, FULL_TIME_POSITION <chr>,
## # PREVAILING_WAGE <dbl>, WORKSITE_CITY <chr>, WORKSITE_STATE_ABB <chr>,
## # YEAR <chr>, WORKSITE_STATE_FULL <chr>, WORKSITE <chr>, lon <dbl>,
## # lat <dbl>
I utilize Scrapy package in Python for the web-scraping. The codes can be found at https://github.com/sharan-naribole/H1B_visa_eda/tree/master/coli. Unfortunately, the webpage that I scraped from provides data only for the most popular 119 cities. As these are the most popular sites, this data can still be utilized for drawing key insights.
coli_data = read.csv("data/coli_data.csv", stringsAsFactors = FALSE)
coli_data <- coli_data %>%
select(WORKSITE_CITY = city, COLI = coli, WORKSITE_STATE_ABB = state)
coli_data$WORKSITE_STATE_FULL = sapply(coli_data$WORKSITE_STATE_ABB, function(x,y) {return(toupper(y[[x]]))}, y = state_hash)
coli_data$WORKSITE = mapply(site_merge,toupper(coli_data$WORKSITE_CITY),coli_data$WORKSITE_STATE_FULL)
coli_data %>%
select(WORKSITE, COLI) -> coli_data
head(coli_data)
## WORKSITE COLI
## 1 NEW YORK, NEW YORK 100.00
## 2 HONOLULU, HAWAII 82.98
## 3 SAN FRANCISCO, CALIFORNIA 108.70
## 4 ANCHORAGE, ALASKA 71.28
## 5 WASHINGTON, DISTRICT OF COLUMBIA 85.09
## 6 NEW HAVEN, CONNECTICUT 70.53
Final step is to merge the coli_data frame with our main data frame. I perform a left join as we still want to retain the records in our main data frame whose Cost of Living index might not be present in the coli_data frame.
h1b_df_tx <- left_join(h1b_df_tx,coli_data, by = "WORKSITE")
saveRDS(h1b_df_tx,"h1b_transformed.rds")
I also save a compact version of the dataframe with only the relevant columns.
#h1b_df_tx %>%
# select(-PW_UNIT_OF_PAY, -SOC_NAME,-CASE_NUMBER,-WORKSITE_CITY) -> h1b_compact
#saveRDS(h1b_compact, "h1b_compact.rds")
For some of the functions created in this notebook, I have added them to a separate helpers.R file for efficient reuse.