-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_data.py
159 lines (124 loc) · 4.7 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from csv import QUOTE_ALL
from joblib import Parallel, delayed
from pandas import DataFrame
from common import cleanup, collected, initialize, logger, lookup, paths, persist, refresh
initialize()
def enrich_committed(timeline, commits):
events = []
for event in timeline:
if event["event"] == "committed":
event["author"]["login"] = lookup("author.login", commits[event["sha"]])
events.append(event)
return events
def enrich_referenced(timeline):
events = []
for event in timeline:
if event["event"] == "referenced":
event["referenced"] = event["url"].split("/")[4:6] == event["commit_url"].split("/")[4:6]
events.append(event)
return events
def unpack_line_or_commit_commented(timeline):
events = []
for event in timeline:
if event["event"] in ["line-commented", "commit-commented"]:
for comment in event["comments"]:
events.append({"event": event["event"], **comment})
else:
events.append(event)
return events
def insert_pulled(timeline, pull):
return [{"event": "pulled", **pull}, *timeline]
def identify_actor(timeline):
events = []
for event in timeline:
actor = lookup(["actor.login", "user.login", "author.login"], event)
event["actor"] = actor if actor is not None else "ghost"
events.append(event)
return events
def identify_time(timeline):
events = []
for event in timeline:
event["time"] = lookup(["created_at", "committer.date", "submitted_at"], event)
events.append(event)
return events
def add_pull_and_event_number(timeline):
events = []
pull_number = timeline[0]["number"]
for event_number, event in enumerate(sorted(timeline, key=lambda event: event["time"])):
event["pull_number"] = pull_number
event["event_number"] = event_number
events.append(event)
return events
def fix_timeline(timeline, pull, commits):
timeline = enrich_committed(timeline, commits)
timeline = enrich_referenced(timeline)
timeline = unpack_line_or_commit_commented(timeline)
timeline = insert_pulled(timeline, pull)
timeline = identify_actor(timeline)
timeline = identify_time(timeline)
return add_pull_and_event_number(timeline)
def fix_timelines(project, timelines, pulls, commits):
fixed = persist(paths("timelines_fixed", project))
for pull in pulls:
fixed[pull] = fix_timeline(timelines[pull], pulls[pull], commits[pull])
return fixed
def filter_timelines(timelines):
rows = []
for timeline in timelines.values():
for event in timeline:
row = {}
for column in [
"pull_number",
"event_number",
"event",
"actor",
"author_association",
"author.name",
"author.email",
"time",
"merged_at",
"state",
"commit_id",
"referenced",
"body",
]:
row[column] = lookup(column, event)
rows.append(row)
return rows
def filter_pulls(pulls):
rows = []
for pull in pulls.values():
row = {}
for column in ["number", "html_url", "title", "body"]:
row[column] = lookup(column, pull)
rows.append(row)
return rows
def export_timelines(project, timelines):
DataFrame(timelines).sort_values(["pull_number", "event_number"]).to_csv(
paths("timelines_preprocessed", project), index=False, quoting=QUOTE_ALL
)
def export_pulls(project, pulls):
DataFrame(pulls).sort_values("number").to_csv(paths("pulls_preprocessed", project), index=False, quoting=QUOTE_ALL)
def preprocess_data(project):
log = logger(__file__, modules={"sqlitedict": "WARNING"})
log.info(f"{project}: Preprocessing data")
timelines = persist(paths("timelines_raw", project))
pulls = persist(paths("pulls_raw", project))
commits = persist(paths("commits", project))
export_timelines(project, filter_timelines(fix_timelines(project, timelines, pulls, commits)))
export_pulls(project, filter_pulls(pulls))
def main():
projects = []
for project in collected():
if cleanup(["timelines_fixed", "timelines_preprocessed", "pulls_preprocessed"], refresh(), project):
projects.append(project)
else:
print(f"Skip preprocessing data for project {project}")
with Parallel(n_jobs=-1) as parallel:
parallel(delayed(preprocess_data)(project) for project in projects)
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("Stop preprocessing data")
exit(1)