-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconvexhull.cpp
68 lines (60 loc) · 2.04 KB
/
convexhull.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
// Compute the 2D convex hull of a set of points using the monotone chain
// algorithm. Eliminate redundant points from the hull if REMOVE_REDUNDANT is
// #defined.
//
// Running time: O(n log n)
//
// INPUT: a vector of input points, unordered.
// OUTPUT: a vector of points in the convex hull, counterclockwise, starting
// with bottommost/leftmost point
#include <cstdio>
#include <cassert>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
#define REMOVE_REDUNDANT
typedef double T;
const T EPS = 1e-7;
struct PT {
T x, y;
PT() {}
PT(T x, T y) : x(x), y(y) {}
bool operator<(const PT &rhs) const { return make_pair(y,x) < make_pair(rhs.y,rhs.x); }
bool operator==(const PT &rhs) const { return make_pair(y,x) == make_pair(rhs.y,rhs.x); }
};
T cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
T area2(PT a, PT b, PT c) { return cross(a,b) + cross(b,c) + cross(c,a); }
#ifdef REMOVE_REDUNDANT
bool between(const PT &a, const PT &b, const PT &c) {
return (fabs(area2(a,b,c)) < EPS && (a.x-b.x)*(c.x-b.x) <= 0 && (a.y-b.y)*(c.y-b.y) <= 0);
}
#endif
void ConvexHull(vector<PT> &pts) {
sort(pts.begin(), pts.end());
pts.erase(unique(pts.begin(), pts.end()), pts.end());
vector<PT> up, dn;
for (int i = 0; i < pts.size(); i++) {
while (up.size() > 1 && area2(up[up.size()-2], up.back(), pts[i]) >= 0) up.pop_back();
while (dn.size() > 1 && area2(dn[dn.size()-2], dn.back(), pts[i]) <= 0) dn.pop_back();
up.push_back(pts[i]);
dn.push_back(pts[i]);
}
pts = dn;
for (int i = (int) up.size() - 2; i >= 1; i--) pts.push_back(up[i]);
#ifdef REMOVE_REDUNDANT
if (pts.size() <= 2) return;
dn.clear();
dn.push_back(pts[0]);
dn.push_back(pts[1]);
for (int i = 2; i < pts.size(); i++) {
if (between(dn[dn.size()-2], dn[dn.size()-1], pts[i])) dn.pop_back();
dn.push_back(pts[i]);
}
if (dn.size() >= 3 && between(dn.back(), dn[0], dn[1])) {
dn[0] = dn.back();
dn.pop_back();
}
pts = dn;
#endif
}