forked from stevekuznetsov/simple-scalar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim-profile.c
885 lines (745 loc) · 29.6 KB
/
sim-profile.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
/* sim-profile.c - sample functional simulator implementation w/ profiling */
/* SimpleScalar(TM) Tool Suite
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
* All Rights Reserved.
*
* THIS IS A LEGAL DOCUMENT, BY USING SIMPLESCALAR,
* YOU ARE AGREEING TO THESE TERMS AND CONDITIONS.
*
* No portion of this work may be used by any commercial entity, or for any
* commercial purpose, without the prior, written permission of SimpleScalar,
* LLC ([email protected]). Nonprofit and noncommercial use is permitted
* as described below.
*
* 1. SimpleScalar is provided AS IS, with no warranty of any kind, express
* or implied. The user of the program accepts full responsibility for the
* application of the program and the use of any results.
*
* 2. Nonprofit and noncommercial use is encouraged. SimpleScalar may be
* downloaded, compiled, executed, copied, and modified solely for nonprofit,
* educational, noncommercial research, and noncommercial scholarship
* purposes provided that this notice in its entirety accompanies all copies.
* Copies of the modified software can be delivered to persons who use it
* solely for nonprofit, educational, noncommercial research, and
* noncommercial scholarship purposes provided that this notice in its
* entirety accompanies all copies.
*
* 3. ALL COMMERCIAL USE, AND ALL USE BY FOR PROFIT ENTITIES, IS EXPRESSLY
* PROHIBITED WITHOUT A LICENSE FROM SIMPLESCALAR, LLC ([email protected]).
*
* 4. No nonprofit user may place any restrictions on the use of this software,
* including as modified by the user, by any other authorized user.
*
* 5. Noncommercial and nonprofit users may distribute copies of SimpleScalar
* in compiled or executable form as set forth in Section 2, provided that
* either: (A) it is accompanied by the corresponding machine-readable source
* code, or (B) it is accompanied by a written offer, with no time limit, to
* give anyone a machine-readable copy of the corresponding source code in
* return for reimbursement of the cost of distribution. This written offer
* must permit verbatim duplication by anyone, or (C) it is distributed by
* someone who received only the executable form, and is accompanied by a
* copy of the written offer of source code.
*
* 6. SimpleScalar was developed by Todd M. Austin, Ph.D. The tool suite is
* currently maintained by SimpleScalar LLC ([email protected]). US Mail:
* 2395 Timbercrest Court, Ann Arbor, MI 48105.
*
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "host.h"
#include "misc.h"
#include "machine.h"
#include "regs.h"
#include "memory.h"
#include "loader.h"
#include "syscall.h"
#include "dlite.h"
#include "symbol.h"
#include "options.h"
#include "stats.h"
#include "sim.h"
/*
* This file implements a functional simulator with profiling support. Run
* with the `-h' flag to see profiling options available.
*/
/* simulated registers */
static struct regs_t regs;
/* simulated memory */
static struct mem_t *mem = NULL;
/* track number of refs */
static counter_t sim_num_refs = 0;
/* maximum number of inst's to execute */
static unsigned int max_insts;
/* profiling options */
static int prof_all /* = FALSE */;
static int prof_ic /* = FALSE */;
static int prof_inst /* = FALSE */;
static int prof_bc /* = FALSE */;
static int prof_am /* = FALSE */;
static int prof_seg /* = FALSE */;
static int prof_tsyms /* = FALSE */;
static int prof_dsyms /* = FALSE */;
static int load_locals /* = FALSE */;
static int prof_taddr /* = FALSE */;
/* text-based stat profiles */
#define MAX_PCSTAT_VARS 8
static int pcstat_nelt = 0;
static char *pcstat_vars[MAX_PCSTAT_VARS];
/* register simulator-specific options */
void
sim_reg_options(struct opt_odb_t *odb)
{
opt_reg_header(odb,
"sim-profile: This simulator implements a functional simulator with\n"
"profiling support. Run with the `-h' flag to see profiling options\n"
"available.\n"
);
/* instruction limit */
opt_reg_uint(odb, "-max:inst", "maximum number of inst's to execute",
&max_insts, /* default */0,
/* print */TRUE, /* format */NULL);
opt_reg_flag(odb, "-all", "enable all profile options",
&prof_all, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_flag(odb, "-iclass", "enable instruction class profiling",
&prof_ic, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_flag(odb, "-iprof", "enable instruction profiling",
&prof_inst, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_flag(odb, "-brprof", "enable branch instruction profiling",
&prof_bc, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_flag(odb, "-amprof", "enable address mode profiling",
&prof_am, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_flag(odb, "-segprof", "enable load/store address segment profiling",
&prof_seg, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_flag(odb, "-tsymprof", "enable text symbol profiling",
&prof_tsyms, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_flag(odb, "-taddrprof", "enable text address profiling",
&prof_taddr, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_flag(odb, "-dsymprof", "enable data symbol profiling",
&prof_dsyms, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_flag(odb, "-internal",
"include compiler-internal symbols during symbol profiling",
&load_locals, /* default */FALSE, /* print */TRUE, NULL);
opt_reg_string_list(odb, "-pcstat",
"profile stat(s) against text addr's (mult uses ok)",
pcstat_vars, MAX_PCSTAT_VARS, &pcstat_nelt, NULL,
/* !print */FALSE, /* format */NULL, /* accrue */TRUE);
}
/* check simulator-specific option values */
void
sim_check_options(struct opt_odb_t *odb, int argc, char **argv)
{
if (prof_all)
{
/* enable all options */
prof_ic = TRUE;
prof_inst = TRUE;
prof_bc = TRUE;
prof_am = TRUE;
prof_seg = TRUE;
prof_tsyms = TRUE;
prof_dsyms = TRUE;
prof_taddr = TRUE;
}
}
/* instruction classes */
enum inst_class_t {
ic_load, /* load inst */
ic_store, /* store inst */
ic_uncond, /* uncond branch */
ic_cond, /* cond branch */
ic_icomp, /* all other integer computation */
ic_fcomp, /* all floating point computation */
ic_trap, /* system call */
ic_NUM
};
/* instruction class strings */
static char *inst_class_str[ic_NUM] = {
"load", /* load inst */
"store", /* store inst */
"uncond branch", /* uncond branch */
"cond branch", /* cond branch */
"int computation", /* all other integer computation */
"fp computation", /* all floating point computation */
"trap" /* system call */
};
/* instruction class profile */
static struct stat_stat_t *ic_prof = NULL;
/* instruction description strings */
static char *inst_str[OP_MAX];
/* instruction profile */
static struct stat_stat_t *inst_prof = NULL;
/* branch class profile */
enum branch_class_t {
bc_uncond_dir, /* direct unconditional branch */
bc_cond_dir, /* direct conditional branch */
bc_call_dir, /* direct functional call */
bc_uncond_indir, /* indirect unconditional branch */
bc_cond_indir, /* indirect conditional branch */
bc_call_indir, /* indirect function call */
bc_NUM
};
/* branch class description strings */
static char *branch_class_str[bc_NUM] = {
"uncond direct", /* direct unconditional branch */
"cond direct", /* direct conditional branch */
"call direct", /* direct functional call */
"uncond indirect", /* indirect unconditional branch */
"cond indirect", /* indirect conditional branch */
"call indirect" /* indirect function call */
};
/* branch profile */
static struct stat_stat_t *bc_prof = NULL;
/* addressing mode profile */
static struct stat_stat_t *am_prof = NULL;
/* address segments */
enum addr_seg_t {
seg_data, /* data segment */
seg_heap, /* heap segment */
seg_stack, /* stack segment */
seg_text, /* text segment */
seg_NUM
};
/* address segment strings */
static char *addr_seg_str[seg_NUM] = {
"data segment", /* data segment */
"heap segment", /* heap segment */
"stack segment", /* stack segment */
"text segment", /* text segment */
};
/* address segment profile */
static struct stat_stat_t *seg_prof = NULL;
/* bind ADDR to the segment it references */
static enum addr_seg_t /* segment referenced by ADDR */
bind_to_seg(md_addr_t addr) /* address to bind to a segment */
{
if (ld_data_base <= addr && addr < (ld_data_base + ld_data_size))
return seg_data;
else if ((ld_data_base + ld_data_size) <= addr && addr < ld_brk_point)
return seg_heap;
/* FIXME: ouch! */
else if ((ld_stack_base - (16*1024*1024)) <= addr && addr < ld_stack_base)
return seg_stack;
else if (ld_text_base <= addr && addr < (ld_text_base + ld_text_size))
return seg_text;
else
panic("cannot bind address to segment");
}
/* text symbol profile */
static struct stat_stat_t *tsym_prof = NULL;
static char **tsym_names = NULL;
/* data symbol profile */
static struct stat_stat_t *dsym_prof = NULL;
static char **dsym_names = NULL;
/* text address profile */
static struct stat_stat_t *taddr_prof = NULL;
/* text-based stat profiles */
static struct stat_stat_t *pcstat_stats[MAX_PCSTAT_VARS];
static counter_t pcstat_lastvals[MAX_PCSTAT_VARS];
static struct stat_stat_t *pcstat_sdists[MAX_PCSTAT_VARS];
/* wedge all stat values into a counter_t */
#define STATVAL(STAT) \
((STAT)->sc == sc_int \
? (counter_t)*((STAT)->variant.for_int.var) \
: ((STAT)->sc == sc_uint \
? (counter_t)*((STAT)->variant.for_uint.var) \
: ((STAT)->sc == sc_counter \
? *((STAT)->variant.for_counter.var) \
: (panic("bad stat class"), 0))))
/* register simulator-specific statistics */
void
sim_reg_stats(struct stat_sdb_t *sdb)
{
int i;
stat_reg_counter(sdb, "sim_num_insn",
"total number of instructions executed",
&sim_num_insn, sim_num_insn, NULL);
stat_reg_counter(sdb, "sim_num_refs",
"total number of loads and stores executed",
&sim_num_refs, 0, NULL);
stat_reg_int(sdb, "sim_elapsed_time",
"total simulation time in seconds",
&sim_elapsed_time, 0, NULL);
stat_reg_formula(sdb, "sim_inst_rate",
"simulation speed (in insts/sec)",
"sim_num_insn / sim_elapsed_time", NULL);
if (prof_ic)
{
/* instruction class profile */
ic_prof = stat_reg_dist(sdb, "sim_inst_class_prof",
"instruction class profile",
/* initial value */0,
/* array size */ic_NUM,
/* bucket size */1,
/* print format */(PF_COUNT|PF_PDF),
/* format */NULL,
/* index map */inst_class_str,
/* print fn */NULL);
}
if (prof_inst)
{
int i;
char buf[512];
/* conjure up appropriate instruction description strings */
for (i=0; i < /* skip NA */OP_MAX-1; i++)
{
sprintf(buf, "%-8s %-6s", md_op2name[i+1], md_op2format[i+1]);
inst_str[i] = mystrdup(buf);
}
/* instruction profile */
inst_prof = stat_reg_dist(sdb, "sim_inst_prof",
"instruction profile",
/* initial value */0,
/* array size */ /* skip NA */OP_MAX-1,
/* bucket size */1,
/* print format */(PF_COUNT|PF_PDF),
/* format */NULL,
/* index map */inst_str,
/* print fn */NULL);
}
if (prof_bc)
{
/* instruction branch profile */
bc_prof = stat_reg_dist(sdb, "sim_branch_prof",
"branch instruction profile",
/* initial value */0,
/* array size */bc_NUM,
/* bucket size */1,
/* print format */(PF_COUNT|PF_PDF),
/* format */NULL,
/* index map */branch_class_str,
/* print fn */NULL);
}
if (prof_am)
{
/* instruction branch profile */
am_prof = stat_reg_dist(sdb, "sim_addr_mode_prof",
"addressing mode profile",
/* initial value */0,
/* array size */md_amode_NUM,
/* bucket size */1,
/* print format */(PF_COUNT|PF_PDF),
/* format */NULL,
/* index map */md_amode_str,
/* print fn */NULL);
}
if (prof_seg)
{
/* instruction branch profile */
seg_prof = stat_reg_dist(sdb, "sim_addr_seg_prof",
"load/store address segment profile",
/* initial value */0,
/* array size */seg_NUM,
/* bucket size */1,
/* print format */(PF_COUNT|PF_PDF),
/* format */NULL,
/* index map */addr_seg_str,
/* print fn */NULL);
}
if (prof_tsyms && sym_ntextsyms != 0)
{
int i;
/* load program symbols */
sym_loadsyms(ld_prog_fname, load_locals);
/* conjure up appropriate instruction description strings */
tsym_names = (char **)calloc(sym_ntextsyms, sizeof(char *));
for (i=0; i < sym_ntextsyms; i++)
tsym_names[i] = sym_textsyms[i]->name;
/* text symbol profile */
tsym_prof = stat_reg_dist(sdb, "sim_text_sym_prof",
"text symbol profile",
/* initial value */0,
/* array size */sym_ntextsyms,
/* bucket size */1,
/* print format */(PF_COUNT|PF_PDF),
/* format */NULL,
/* index map */tsym_names,
/* print fn */NULL);
}
if (prof_dsyms && sym_ndatasyms != 0)
{
int i;
/* load program symbols */
sym_loadsyms(ld_prog_fname, load_locals);
/* conjure up appropriate instruction description strings */
dsym_names = (char **)calloc(sym_ndatasyms, sizeof(char *));
for (i=0; i < sym_ndatasyms; i++)
dsym_names[i] = sym_datasyms[i]->name;
/* data symbol profile */
dsym_prof = stat_reg_dist(sdb, "sim_data_sym_prof",
"data symbol profile",
/* initial value */0,
/* array size */sym_ndatasyms,
/* bucket size */1,
/* print format */(PF_COUNT|PF_PDF),
/* format */NULL,
/* index map */dsym_names,
/* print fn */NULL);
}
if (prof_taddr)
{
/* text address profile (sparse profile), NOTE: a dense print format
is used, its more difficult to read, but the profiles are *much*
smaller, I've assumed that the profiles are read by programs, at
least for your sake I hope this is the case!! */
taddr_prof = stat_reg_sdist(sdb, "sim_text_addr_prof",
"text address profile",
/* initial value */0,
/* print format */(PF_COUNT|PF_PDF),
/* format */"0x%p %u %.2f",
/* print fn */NULL);
}
for (i=0; i<pcstat_nelt; i++)
{
char buf[512], buf1[512];
struct stat_stat_t *stat;
/* track the named statistical variable by text address */
/* find it... */
stat = stat_find_stat(sdb, pcstat_vars[i]);
if (!stat)
fatal("cannot locate any statistic named `%s'", pcstat_vars[i]);
/* stat must be an integral type */
if (stat->sc != sc_int && stat->sc != sc_uint && stat->sc != sc_counter)
fatal("`-pcstat' statistical variable `%s' is not an integral type",
stat->name);
/* register this stat */
pcstat_stats[i] = stat;
pcstat_lastvals[i] = STATVAL(stat);
/* declare the sparce text distribution */
sprintf(buf, "%s_by_pc", stat->name);
sprintf(buf1, "%s (by text address)", stat->desc);
pcstat_sdists[i] = stat_reg_sdist(sdb, buf, buf1,
/* initial value */0,
/* print format */(PF_COUNT|PF_PDF),
/* format */"0x%p %u %.2f",
/* print fn */NULL);
}
ld_reg_stats(sdb);
mem_reg_stats(mem, sdb);
}
/* initialize the simulator */
void
sim_init(void)
{
sim_num_refs = 0;
/* allocate and initialize register file */
regs_init(®s);
/* allocate and initialize memory space */
mem = mem_create("mem");
mem_init(mem);
}
/* local machine state accessor */
static char * /* err str, NULL for no err */
profile_mstate_obj(FILE *stream, /* output stream */
char *cmd, /* optional command string */
struct regs_t *regs, /* registers to access */
struct mem_t *mem) /* memory to access */
{
/* just dump intermediate stats */
sim_print_stats(stream);
/* no error */
return NULL;
}
/* load program into simulated state */
void
sim_load_prog(char *fname, /* program to load */
int argc, char **argv, /* program arguments */
char **envp) /* program environment */
{
/* load program text and data, set up environment, memory, and regs */
ld_load_prog(fname, argc, argv, envp, ®s, mem, TRUE);
/* initialize the DLite debugger */
dlite_init(md_reg_obj, dlite_mem_obj, profile_mstate_obj);
}
/* print simulator-specific configuration information */
void
sim_aux_config(FILE *stream) /* output stream */
{
/* nothing currently */
}
/* dump simulator-specific auxiliary simulator statistics */
void
sim_aux_stats(FILE *stream) /* output stream */
{
}
/* un-initialize simulator-specific state */
void
sim_uninit(void)
{
/* nada */
}
/*
* configure the execution engine
*/
/*
* precise architected register accessors
*/
/* next program counter */
#define SET_NPC(EXPR) (regs.regs_NPC = (EXPR))
/* current program counter */
#define CPC (regs.regs_PC)
/* general purpose registers */
#define GPR(N) (regs.regs_R[N])
#define SET_GPR(N,EXPR) (regs.regs_R[N] = (EXPR))
#if defined(TARGET_PISA)
/* floating point registers, L->word, F->single-prec, D->double-prec */
#define FPR_L(N) (regs.regs_F.l[(N)])
#define SET_FPR_L(N,EXPR) (regs.regs_F.l[(N)] = (EXPR))
#define FPR_F(N) (regs.regs_F.f[(N)])
#define SET_FPR_F(N,EXPR) (regs.regs_F.f[(N)] = (EXPR))
#define FPR_D(N) (regs.regs_F.d[(N) >> 1])
#define SET_FPR_D(N,EXPR) (regs.regs_F.d[(N) >> 1] = (EXPR))
/* miscellaneous register accessors */
#define SET_HI(EXPR) (regs.regs_C.hi = (EXPR))
#define HI (regs.regs_C.hi)
#define SET_LO(EXPR) (regs.regs_C.lo = (EXPR))
#define LO (regs.regs_C.lo)
#define FCC (regs.regs_C.fcc)
#define SET_FCC(EXPR) (regs.regs_C.fcc = (EXPR))
#elif defined(TARGET_ALPHA)
/* floating point registers, L->word, F->single-prec, D->double-prec */
#define FPR_Q(N) (regs.regs_F.q[N])
#define SET_FPR_Q(N,EXPR) (regs.regs_F.q[N] = (EXPR))
#define FPR(N) (regs.regs_F.d[N])
#define SET_FPR(N,EXPR) (regs.regs_F.d[N] = (EXPR))
/* miscellaneous register accessors */
#define FPCR (regs.regs_C.fpcr)
#define SET_FPCR(EXPR) (regs.regs_C.fpcr = (EXPR))
#define UNIQ (regs.regs_C.uniq)
#define SET_UNIQ(EXPR) (regs.regs_C.uniq = (EXPR))
#else
#error No ISA target defined...
#endif
/* precise architected memory state accessor macros */
#define READ_BYTE(SRC, FAULT) \
((FAULT) = md_fault_none, addr = (SRC), MEM_READ_BYTE(mem, addr))
#define READ_HALF(SRC, FAULT) \
((FAULT) = md_fault_none, addr = (SRC), MEM_READ_HALF(mem, addr))
#define READ_WORD(SRC, FAULT) \
((FAULT) = md_fault_none, addr = (SRC), MEM_READ_WORD(mem, addr))
#ifdef HOST_HAS_QWORD
#define READ_QWORD(SRC, FAULT) \
((FAULT) = md_fault_none, addr = (SRC), MEM_READ_QWORD(mem, addr))
#endif /* HOST_HAS_QWORD */
#define WRITE_BYTE(SRC, DST, FAULT) \
((FAULT) = md_fault_none, addr = (DST), MEM_WRITE_BYTE(mem, addr, (SRC)))
#define WRITE_HALF(SRC, DST, FAULT) \
((FAULT) = md_fault_none, addr = (DST), MEM_WRITE_HALF(mem, addr, (SRC)))
#define WRITE_WORD(SRC, DST, FAULT) \
((FAULT) = md_fault_none, addr = (DST), MEM_WRITE_WORD(mem, addr, (SRC)))
#ifdef HOST_HAS_QWORD
#define WRITE_QWORD(SRC, DST, FAULT) \
((FAULT) = md_fault_none, addr = (DST), MEM_WRITE_QWORD(mem, addr, (SRC)))
#endif /* HOST_HAS_QWORD */
/* system call handler macro */
#define SYSCALL(INST) sys_syscall(®s, mem_access, mem, INST, TRUE)
/* addressing mode FSM (dest of last LUI, used for decoding addr modes) */
static unsigned int fsm = 0;
/* start simulation, program loaded, processor precise state initialized */
void
sim_main(void)
{
int i;
md_inst_t inst;
register md_addr_t addr;
register int is_write;
enum md_opcode op;
unsigned int flags;
enum md_fault_type fault;
fprintf(stderr, "sim: ** starting functional simulation **\n");
/* set up initial default next PC */
regs.regs_NPC = regs.regs_PC + sizeof(md_inst_t);
/* check for DLite debugger entry condition */
if (dlite_check_break(regs.regs_PC, /* no access */0, /* addr */0, 0, 0))
dlite_main(regs.regs_PC - sizeof(md_inst_t), regs.regs_PC,
sim_num_insn, ®s, mem);
while (TRUE)
{
/* maintain $r0 semantics */
regs.regs_R[MD_REG_ZERO] = 0;
#ifdef TARGET_ALPHA
regs.regs_F.d[MD_REG_ZERO] = 0.0;
#endif /* TARGET_ALPHA */
/* get the next instruction to execute */
MD_FETCH_INST(inst, mem, regs.regs_PC);
if (verbose)
{
myfprintf(stderr, "%10n @ 0x%08p: ", sim_num_insn, regs.regs_PC);
md_print_insn(inst, regs.regs_PC, stderr);
fprintf(stderr, "\n");
/* fflush(stderr); */
}
/* keep an instruction count */
sim_num_insn++;
/* set default reference address and access mode */
addr = 0; is_write = FALSE;
/* set default fault - none */
fault = md_fault_none;
/* decode the instruction */
MD_SET_OPCODE(op, inst);
/* execute the instruction */
switch (op)
{
#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,O1,O2,I1,I2,I3) \
case OP: \
SYMCAT(OP,_IMPL); \
break;
#define DEFLINK(OP,MSK,NAME,MASK,SHIFT) \
case OP: \
panic("attempted to execute a linking opcode");
#define CONNECT(OP)
#define DECLARE_FAULT(FAULT) \
{ fault = (FAULT); break; }
#include "machine.def"
default:
panic("attempted to execute a bogus opcode");
}
if (MD_OP_FLAGS(op) & F_MEM)
{
sim_num_refs++;
if (MD_OP_FLAGS(op) & F_STORE)
is_write = TRUE;
}
/*
* profile this instruction
*/
flags = MD_OP_FLAGS(op);
if (prof_ic)
{
enum inst_class_t ic;
/* compute instruction class */
if (flags & F_LOAD)
ic = ic_load;
else if (flags & F_STORE)
ic = ic_store;
else if (flags & F_UNCOND)
ic = ic_uncond;
else if (flags & F_COND)
ic = ic_cond;
else if (flags & F_ICOMP)
ic = ic_icomp;
else if (flags & F_FCOMP)
ic = ic_fcomp;
else if (flags & F_TRAP)
ic = ic_trap;
else
panic("instruction has no class");
/* update instruction class profile */
stat_add_sample(ic_prof, (int)ic);
}
if (prof_inst)
{
/* update instruction profile */
stat_add_sample(inst_prof, (int)op - /* skip NA */1);
}
if (prof_bc)
{
enum branch_class_t bc;
/* compute instruction class */
if (flags & F_CTRL)
{
if ((flags & (F_CALL|F_DIRJMP)) == (F_CALL|F_DIRJMP))
bc = bc_call_dir;
else if ((flags & (F_CALL|F_INDIRJMP)) == (F_CALL|F_INDIRJMP))
bc = bc_call_indir;
else if ((flags & (F_UNCOND|F_DIRJMP)) == (F_UNCOND|F_DIRJMP))
bc = bc_uncond_dir;
else if ((flags & (F_UNCOND|F_INDIRJMP))== (F_UNCOND|F_INDIRJMP))
bc = bc_uncond_indir;
else if ((flags & (F_COND|F_DIRJMP)) == (F_COND|F_DIRJMP))
bc = bc_cond_dir;
else if ((flags & (F_COND|F_INDIRJMP)) == (F_COND|F_INDIRJMP))
bc = bc_cond_indir;
else
panic("branch has no class");
/* update instruction class profile */
stat_add_sample(bc_prof, (int)bc);
}
}
if (prof_am)
{
enum md_amode_type am;
/* update addressing mode pre-probe FSM */
MD_AMODE_PREPROBE(op, fsm);
/* compute addressing mode */
if (flags & F_MEM)
{
/* compute addressing mode */
MD_AMODE_PROBE(am, op, fsm);
/* update the addressing mode profile */
stat_add_sample(am_prof, (int)am);
/* addressing mode pre-probe FSM, after all loads and stores */
MD_AMODE_POSTPROBE(fsm);
}
}
if (prof_seg)
{
if (flags & F_MEM)
{
/* update instruction profile */
stat_add_sample(seg_prof, (int)bind_to_seg(addr));
}
}
if (prof_tsyms)
{
int tindex;
/* attempt to bind inst address to a text segment symbol */
sym_bind_addr(regs.regs_PC, &tindex, /* !exact */FALSE, sdb_text);
if (tindex >= 0)
{
if (tindex > sym_ntextsyms)
panic("bogus text symbol index");
stat_add_sample(tsym_prof, tindex);
}
/* else, could not bind to a symbol */
}
if (prof_dsyms)
{
int dindex;
if (flags & F_MEM)
{
/* attempt to bind inst address to a text segment symbol */
sym_bind_addr(addr, &dindex, /* !exact */FALSE, sdb_data);
if (dindex >= 0)
{
if (dindex > sym_ndatasyms)
panic("bogus data symbol index");
stat_add_sample(dsym_prof, dindex);
}
/* else, could not bind to a symbol */
}
}
if (prof_taddr)
{
/* add regs_PC exec event to text address profile */
stat_add_sample(taddr_prof, regs.regs_PC);
}
/* update any stats tracked by PC */
for (i=0; i<pcstat_nelt; i++)
{
counter_t newval;
int delta;
/* check if any tracked stats changed */
newval = STATVAL(pcstat_stats[i]);
delta = newval - pcstat_lastvals[i];
if (delta != 0)
{
stat_add_samples(pcstat_sdists[i], regs.regs_PC, delta);
pcstat_lastvals[i] = newval;
}
}
/* check for DLite debugger entry condition */
if (dlite_check_break(regs.regs_NPC,
is_write ? ACCESS_WRITE : ACCESS_READ,
addr, sim_num_insn, sim_num_insn))
dlite_main(regs.regs_PC, regs.regs_NPC, sim_num_insn, ®s, mem);
/* go to the next instruction */
regs.regs_PC = regs.regs_NPC;
regs.regs_NPC += sizeof(md_inst_t);
/* finish early? */
if (max_insts && sim_num_insn >= max_insts)
return;
}
}