forked from stevekuznetsov/simple-scalar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalpha.h
679 lines (534 loc) · 25.2 KB
/
alpha.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/* alpha.h - Alpha ISA definitions */
/* SimpleScalar(TM) Tool Suite
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
* All Rights Reserved.
*
* THIS IS A LEGAL DOCUMENT, BY USING SIMPLESCALAR,
* YOU ARE AGREEING TO THESE TERMS AND CONDITIONS.
*
* No portion of this work may be used by any commercial entity, or for any
* commercial purpose, without the prior, written permission of SimpleScalar,
* LLC ([email protected]). Nonprofit and noncommercial use is permitted
* as described below.
*
* 1. SimpleScalar is provided AS IS, with no warranty of any kind, express
* or implied. The user of the program accepts full responsibility for the
* application of the program and the use of any results.
*
* 2. Nonprofit and noncommercial use is encouraged. SimpleScalar may be
* downloaded, compiled, executed, copied, and modified solely for nonprofit,
* educational, noncommercial research, and noncommercial scholarship
* purposes provided that this notice in its entirety accompanies all copies.
* Copies of the modified software can be delivered to persons who use it
* solely for nonprofit, educational, noncommercial research, and
* noncommercial scholarship purposes provided that this notice in its
* entirety accompanies all copies.
*
* 3. ALL COMMERCIAL USE, AND ALL USE BY FOR PROFIT ENTITIES, IS EXPRESSLY
* PROHIBITED WITHOUT A LICENSE FROM SIMPLESCALAR, LLC ([email protected]).
*
* 4. No nonprofit user may place any restrictions on the use of this software,
* including as modified by the user, by any other authorized user.
*
* 5. Noncommercial and nonprofit users may distribute copies of SimpleScalar
* in compiled or executable form as set forth in Section 2, provided that
* either: (A) it is accompanied by the corresponding machine-readable source
* code, or (B) it is accompanied by a written offer, with no time limit, to
* give anyone a machine-readable copy of the corresponding source code in
* return for reimbursement of the cost of distribution. This written offer
* must permit verbatim duplication by anyone, or (C) it is distributed by
* someone who received only the executable form, and is accompanied by a
* copy of the written offer of source code.
*
* 6. SimpleScalar was developed by Todd M. Austin, Ph.D. The tool suite is
* currently maintained by SimpleScalar LLC ([email protected]). US Mail:
* 2395 Timbercrest Court, Ann Arbor, MI 48105.
*
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
*/
#ifndef ALPHA_H
#define ALPHA_H
#include <stdio.h>
#include "host.h"
#include "misc.h"
#include "config.h"
#include "endian.h"
/*
* This file contains various definitions needed to decode, disassemble, and
* execute Alpha AXP instructions.
*/
/* build for Alpha AXP target */
#define TARGET_ALPHA
/* probe cross-endian execution */
#if defined(BYTES_BIG_ENDIAN)
#define MD_CROSS_ENDIAN
#endif
/* not applicable/available, usable in most definition contexts */
#define NA 0
/*
* target-dependent type definitions
*/
/* define MD_QWORD_ADDRS if the target requires 64-bit (qword) addresses */
#define MD_QWORD_ADDRS
/* address type definition */
typedef qword_t md_addr_t;
/*
* target-dependent memory module configuration
*/
/* physical memory page size (must be a power-of-two) */
#define MD_PAGE_SIZE 8192
#define MD_LOG_PAGE_SIZE 13
/*
* target-dependent instruction faults
*/
enum md_fault_type {
md_fault_none = 0, /* no fault */
md_fault_access, /* storage access fault */
md_fault_alignment, /* storage alignment fault */
md_fault_overflow, /* signed arithmetic overflow fault */
md_fault_div0, /* division by zero fault */
md_fault_invalid, /* invalid arithmetic operation */
/* added to allow SQRT{S,T} in FIX exts */
md_fault_break, /* BREAK instruction fault */
md_fault_unimpl, /* unimplemented instruction fault */
md_fault_internal /* internal S/W fault */
};
/*
* target-dependent register file definitions, used by regs.[hc]
*/
/* number of integer registers */
#define MD_NUM_IREGS 32
/* number of floating point registers */
#define MD_NUM_FREGS 32
/* number of control registers */
#define MD_NUM_CREGS 2
/* total number of registers, excluding PC and NPC */
#define MD_TOTAL_REGS \
(/*int*/32 + /*fp*/32 + /*misc*/2 + /*tmp*/1 + /*mem*/1 + /*ctrl*/1)
/* general purpose (integer) register file entry type */
typedef qword_t md_gpr_t[MD_NUM_IREGS];
/* floating point register file entry type */
typedef union {
qword_t q[MD_NUM_FREGS]; /* integer qword view */
dfloat_t d[MD_NUM_FREGS]; /* double-precision floating point view */
} md_fpr_t;
/* control register file contents */
typedef struct {
qword_t fpcr; /* floating point condition codes */
qword_t uniq; /* process-unique register */
} md_ctrl_t;
/* well known registers */
enum md_reg_names {
MD_REG_V0 = 0, /* return value reg */
MD_REG_ERR = 7,
MD_REG_FP = 15, /* frame pointer */
MD_REG_A0 = 16, /* argument regs */
MD_REG_A1 = 17,
MD_REG_A2 = 18,
MD_REG_A3 = 19,
MD_REG_A4 = 20,
MD_REG_A5 = 21,
MD_REG_RA = 26, /* return address reg */
MD_REG_GP = 29, /* global data section pointer */
MD_REG_SP = 30, /* stack pointer */
MD_REG_ZERO = 31 /* zero register */
};
/*
* target-dependent instruction format definition
*/
/* instruction formats */
typedef word_t md_inst_t;
/* preferred nop instruction definition */
extern md_inst_t MD_NOP_INST;
/* target swap support */
#ifdef MD_CROSS_ENDIAN
#define MD_SWAPH(X) SWAP_HALF(X)
#define MD_SWAPW(X) SWAP_WORD(X)
#define MD_SWAPQ(X) SWAP_QWORD(X)
#define MD_SWAPI(X) SWAP_WORD(X)
#else /* !MD_CROSS_ENDIAN */
#define MD_SWAPH(X) (X)
#define MD_SWAPW(X) (X)
#define MD_SWAPQ(X) (X)
#define MD_SWAPD(X) (X)
#define MD_SWAPI(X) (X)
#endif
/* fetch an instruction */
#define MD_FETCH_INST(INST, MEM, PC) \
{ (INST) = MEM_READ_WORD((MEM), (PC)); }
/*
* target-dependent loader module configuration
*/
/* maximum size of argc+argv+envp environment */
#define MD_MAX_ENVIRON 16384
/*
* machine.def specific definitions
*/
/* inst -> enum md_opcode mapping, use this macro to decode insts */
#define MD_TOP_OP(INST) (((INST) >> 26) & 0x3f)
#define MD_SET_OPCODE(OP, INST) \
{ OP = md_mask2op[MD_TOP_OP(INST)]; \
while (md_opmask[OP]) \
OP = md_mask2op[((INST >> md_opshift[OP]) & md_opmask[OP]) \
+ md_opoffset[OP]]; }
/* largest opcode field value (currently upper 8-bit are used for pre/post-
incr/decr operation specifiers */
#define MD_MAX_MASK 2048
/* global opcode names, these are returned by the decoder (MD_OP_ENUM()) */
enum md_opcode {
OP_NA = 0, /* NA */
#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,O1,O2,I1,I2,I3) OP,
#define DEFLINK(OP,MSK,NAME,MASK,SHIFT) OP,
#define CONNECT(OP)
#include "machine.def"
OP_MAX /* number of opcodes + NA */
};
/* internal decoder state */
extern enum md_opcode md_mask2op[];
extern unsigned int md_opoffset[];
extern unsigned int md_opmask[];
extern unsigned int md_opshift[];
/* enum md_opcode -> description string */
#define MD_OP_NAME(OP) (md_op2name[OP])
extern char *md_op2name[];
/* enum md_opcode -> opcode operand format, used by disassembler */
#define MD_OP_FORMAT(OP) (md_op2format[OP])
extern char *md_op2format[];
/* function unit classes, update md_fu2name if you update this definition */
enum md_fu_class {
FUClamd_NA = 0, /* inst does not use a functional unit */
IntALU, /* integer ALU */
IntMULT, /* integer multiplier */
IntDIV, /* integer divider */
FloatADD, /* floating point adder/subtractor */
FloatCMP, /* floating point comparator */
FloatCVT, /* floating point<->integer converter */
FloatMULT, /* floating point multiplier */
FloatDIV, /* floating point divider */
FloatSQRT, /* floating point square root */
RdPort, /* memory read port */
WrPort, /* memory write port */
NUM_FU_CLASSES /* total functional unit classes */
};
/* enum md_opcode -> enum md_fu_class, used by performance simulators */
#define MD_OP_FUCLASS(OP) (md_op2fu[OP])
extern enum md_fu_class md_op2fu[];
/* enum md_fu_class -> description string */
#define MD_FU_NAME(FU) (md_fu2name[FU])
extern char *md_fu2name[];
/* instruction flags */
#define F_ICOMP 0x00000001 /* integer computation */
#define F_FCOMP 0x00000002 /* FP computation */
#define F_CTRL 0x00000004 /* control inst */
#define F_UNCOND 0x00000008 /* unconditional change */
#define F_COND 0x00000010 /* conditional change */
#define F_MEM 0x00000020 /* memory access inst */
#define F_LOAD 0x00000040 /* load inst */
#define F_STORE 0x00000080 /* store inst */
#define F_DISP 0x00000100 /* displaced (R+C) addr mode */
#define F_RR 0x00000200 /* R+R addr mode */
#define F_DIRECT 0x00000400 /* direct addressing mode */
#define F_TRAP 0x00000800 /* traping inst */
#define F_LONGLAT 0x00001000 /* long latency inst (for sched) */
#define F_DIRJMP 0x00002000 /* direct jump */
#define F_INDIRJMP 0x00004000 /* indirect jump */
#define F_CALL 0x00008000 /* function call */
#define F_FPCOND 0x00010000 /* FP conditional branch */
#define F_IMM 0x00020000 /* instruction has immediate operand */
/* enum md_opcode -> opcode flags, used by simulators */
#define MD_OP_FLAGS(OP) (md_op2flags[OP])
extern unsigned int md_op2flags[];
/* integer register specifiers */
#define RA ((inst >> 21) & 0x1f) /* reg source #1 */
#define RB ((inst >> 16) & 0x1f) /* reg source #2 */
#define RC (inst & 0x1f) /* reg dest */
/* returns 8-bit unsigned immediate field value */
#define IMM ((qword_t)((inst >> 13) & 0xff))
/* returns 21-bit unsigned absolute jump target field value */
#define TARG (inst & 0x1fffff)
/* load/store 16-bit unsigned offset field value */
#define OFS (inst & 0xffff)
/* sign-extend operands */
#define SEXT(X) \
(((X) & 0x8000) ? ((sqword_t)(X) | LL(0xffffffffffff0000)) : (sqword_t)(X))
#define SEXT21(X) \
(((X) & 0x100000) ? ((sqword_t)(X) | LL(0xffffffffffe00000)) : (sqword_t)(X))
#define SEXT32(X) \
(((X) & 0x80000000) ? ((sqword_t)(X)|LL(0xffffffff00000000)) : (sqword_t)(X))
/* test for arithmetic overflow */
#define ARITH_OVFL(RESULT, OP1, OP2) ((RESULT) < (OP1) || (RESULT) < (OP2))
/* test for NaN */
#define IEEEFP_DBL_SIGN(Q) ((Q) >> 63)
#define IEEEFP_DBL_EXPONENT(Q) (((Q) >> 52) & 0x7ff)
#define IEEEFP_DBL_FRACTION(Q) ((Q) & ULL(0xfffffffffffff))
#define IS_IEEEFP_DBL_NAN(Q) \
((IEEEFP_DBL_EXPONENT(Q) == 0x7ff) && (IEEEFP_DBL_FRACTION(Q)))
/* default target PC handling */
#ifndef SET_TPC
#define SET_TPC(PC) (void)0
#endif /* SET_TPC */
/*
* various other helper macros/functions
*/
/* non-zero if system call is an exit() */
#define OSF_SYS_exit 1
#define MD_EXIT_SYSCALL(REGS) \
((REGS)->regs_R[MD_REG_V0] == OSF_SYS_exit)
/* non-zero if system call is a write to stdout/stderr */
#define OSF_SYS_write 4
#define MD_OUTPUT_SYSCALL(REGS) \
((REGS)->regs_R[MD_REG_V0] == OSF_SYS_write \
&& ((REGS)->regs_R[MD_REG_A0] == /* stdout */1 \
|| (REGS)->regs_R[MD_REG_A0] == /* stderr */2))
/* returns stream of an output system call, translated to host */
#define MD_STREAM_FILENO(REGS) ((REGS)->regs_R[MD_REG_A0])
/* returns non-zero if instruction is a function call */
#define MD_IS_CALL(OP) ((OP) == JSR || (OP) == BSR)
/* returns non-zero if instruction is a function return */
#define MD_IS_RETURN(OP) ((OP) == RETN)
/* returns non-zero if instruction is an indirect jump */
#define MD_IS_INDIR(OP) \
((OP) == JMP || (OP) == JSR || (OP) == RETN || (OP) == JSR_COROUTINE)
/* addressing mode probe, enums and strings */
enum md_amode_type {
md_amode_imm, /* immediate addressing mode */
md_amode_gp, /* global data access through global pointer */
md_amode_sp, /* stack access through stack pointer */
md_amode_fp, /* stack access through frame pointer */
md_amode_disp, /* (reg + const) addressing */
md_amode_rr, /* (reg + reg) addressing */
md_amode_NUM
};
extern char *md_amode_str[md_amode_NUM];
/* addressing mode pre-probe FSM, must see all instructions */
#define MD_AMODE_PREPROBE(OP, FSM) { (FSM) = 0; }
/* compute addressing mode, only for loads/stores */
#define MD_AMODE_PROBE(AM, OP, FSM) \
{ \
if (MD_OP_FLAGS(OP) & F_DISP) \
{ \
if ((RB) == MD_REG_GP) \
(AM) = md_amode_gp; \
else if ((RB) == MD_REG_SP) \
(AM) = md_amode_sp; \
else if ((RB) == MD_REG_FP) /* && bind_to_seg(addr) == seg_stack */\
(AM) = md_amode_fp; \
else \
(AM) = md_amode_disp; \
} \
else if (MD_OP_FLAGS(OP) & F_RR) \
(AM) = md_amode_rr; \
else \
panic("cannot decode addressing mode"); \
}
/* addressing mode pre-probe FSM, after all loads and stores */
#define MD_AMODE_POSTPROBE(FSM) /* nada... */
/*
* EIO package configuration/macros
*/
/* expected EIO file format */
#define MD_EIO_FILE_FORMAT EIO_ALPHA_FORMAT
#define MD_MISC_REGS_TO_EXO(REGS) \
exo_new(ec_list, \
/*icnt*/exo_new(ec_integer, (exo_integer_t)sim_num_insn), \
/*PC*/exo_new(ec_address, (exo_integer_t)(REGS)->regs_PC), \
/*NPC*/exo_new(ec_address, (exo_integer_t)(REGS)->regs_NPC), \
/*FPCR*/exo_new(ec_integer, (exo_integer_t)(REGS)->regs_C.fpcr),\
/*UNIQ*/exo_new(ec_integer, (exo_integer_t)(REGS)->regs_C.uniq),\
NULL)
#define MD_IREG_TO_EXO(REGS, IDX) \
exo_new(ec_address, (exo_integer_t)(REGS)->regs_R[IDX])
#define MD_FREG_TO_EXO(REGS, IDX) \
exo_new(ec_address, (exo_integer_t)(REGS)->regs_F.q[IDX])
#define MD_EXO_TO_MISC_REGS(EXO, ICNT, REGS) \
/* check EXO format for errors... */ \
if (!exo \
|| exo->ec != ec_list \
|| !exo->as_list.head \
|| exo->as_list.head->ec != ec_integer \
|| !exo->as_list.head->next \
|| exo->as_list.head->next->ec != ec_address \
|| !exo->as_list.head->next->next \
|| exo->as_list.head->next->next->ec != ec_address \
|| !exo->as_list.head->next->next->next \
|| exo->as_list.head->next->next->next->ec != ec_integer \
|| !exo->as_list.head->next->next->next->next \
|| exo->as_list.head->next->next->next->next->ec != ec_integer \
|| exo->as_list.head->next->next->next->next->next != NULL) \
fatal("could not read EIO misc regs"); \
(ICNT) = (counter_t)exo->as_list.head->as_integer.val; \
(REGS)->regs_PC = (md_addr_t)exo->as_list.head->next->as_integer.val; \
(REGS)->regs_NPC = \
(md_addr_t)exo->as_list.head->next->next->as_integer.val; \
(REGS)->regs_C.fpcr = \
(qword_t)exo->as_list.head->next->next->next->as_integer.val; \
(REGS)->regs_C.uniq = \
(qword_t)exo->as_list.head->next->next->next->next->as_integer.val;
#define MD_EXO_TO_IREG(EXO, REGS, IDX) \
((REGS)->regs_R[IDX] = (qword_t)(EXO)->as_integer.val)
#define MD_EXO_TO_FREG(EXO, REGS, IDX) \
((REGS)->regs_F.q[IDX] = (qword_t)(EXO)->as_integer.val)
#define MD_EXO_CMP_IREG(EXO, REGS, IDX) \
((REGS)->regs_R[IDX] != (qword_t)(EXO)->as_integer.val)
#define MD_FIRST_IN_REG 0
#define MD_LAST_IN_REG 21
#define MD_FIRST_OUT_REG 0
#define MD_LAST_OUT_REG 21
/*
* configure the EXO package
*/
/* EXO pointer class */
typedef qword_t exo_address_t;
/* EXO integer class, 64-bit encoding */
typedef qword_t exo_integer_t;
/* EXO floating point class, 64-bit encoding */
typedef double exo_float_t;
/*
* configure the stats package
*/
/* counter stats */
#define stat_reg_counter stat_reg_sqword
#define sc_counter sc_sqword
#define for_counter for_sqword
/* address stats */
#define stat_reg_addr stat_reg_qword
/*
* configure the DLite! debugger
*/
/* register bank specifier */
enum md_reg_type {
rt_gpr, /* general purpose register */
rt_lpr, /* integer-precision floating pointer register */
rt_fpr, /* single-precision floating pointer register */
rt_dpr, /* double-precision floating pointer register */
rt_ctrl, /* control register */
rt_PC, /* program counter */
rt_NPC, /* next program counter */
rt_NUM
};
/* register name specifier */
struct md_reg_names_t {
char *str; /* register name */
enum md_reg_type file; /* register file */
int reg; /* register index */
};
/* symbolic register names, parser is case-insensitive */
extern struct md_reg_names_t md_reg_names[];
/* returns a register name string */
char *md_reg_name(enum md_reg_type rt, int reg);
/* default register accessor object */
struct eval_value_t;
struct regs_t;
char * /* err str, NULL for no err */
md_reg_obj(struct regs_t *regs, /* registers to access */
int is_write, /* access type */
enum md_reg_type rt, /* reg bank to probe */
int reg, /* register number */
struct eval_value_t *val); /* input, output */
/* print integer REG(S) to STREAM */
void md_print_ireg(md_gpr_t regs, int reg, FILE *stream);
void md_print_iregs(md_gpr_t regs, FILE *stream);
/* print floating point REG(S) to STREAM */
void md_print_fpreg(md_fpr_t regs, int reg, FILE *stream);
void md_print_fpregs(md_fpr_t regs, FILE *stream);
/* print control REG(S) to STREAM */
void md_print_creg(md_ctrl_t regs, int reg, FILE *stream);
void md_print_cregs(md_ctrl_t regs, FILE *stream);
/* xor checksum registers */
word_t md_xor_regs(struct regs_t *regs);
/*
* configure sim-outorder specifics
*/
/* primitive operation used to compute addresses within pipeline */
#define MD_AGEN_OP ADDQ
/* NOP operation when injected into the pipeline */
#define MD_NOP_OP OP_NA
/* non-zero for a valid address, used to determine if speculative accesses
should access the DL1 data cache */
#define MD_VALID_ADDR(ADDR) \
(((ADDR) >= ld_text_base && (ADDR) < (ld_text_base + ld_text_size)) \
|| ((ADDR) >= ld_data_base && (ADDR) < ld_brk_point) \
|| ((ADDR) >= (ld_stack_base - 16*1024*1024) && (ADDR) < ld_stack_base))
/*
* configure branch predictors
*/
/* shift used to ignore branch address least significant bits, usually
log2(sizeof(md_inst_t)) */
#define MD_BR_SHIFT 2 /* log2(4) */
/*
* target-dependent routines
*/
/* intialize the inst decoder, this function builds the ISA decode tables */
void md_init_decoder(void);
/* disassemble a SimpleScalar instruction */
void
md_print_insn(md_inst_t inst, /* instruction to disassemble */
md_addr_t pc, /* addr of inst, used for PC-rels */
FILE *stream); /* output stream */
#endif /* ALPHA_H */
#if 0
/* instruction/address formats */
typedef qword_t MD_ADDR_TYPE;
typedef qword_t MD_PTR_TYPE;
typedef word_t MD_INST_TYPE;
#define MD_INST_SIZE sizeof(MD_INST_TYPE)
/* virtual memory segment limits */
#define MD_TEXT_BASE 0x20000000ULL
#define MD_STACK_BASE (MD_TEXT_BASE - (409600+4096))
/* well known registers */
enum { REG_V0, REG_A0=16, REG_A1, REG_A2, REG_A3, REG_A4, REG_A5, REG_ERR=7,
REG_GP=29, REG_SP, REG_ZERO, REG_RA=26 };
/* total number of register in processor 32I+32F+HI+LO+FCC+TMP+MEM+CTRL */
#define MD_TOTAL_REGS \
(MD_NUM_REGS+MD_NUM_REGS+/*FPCR*/1+/*UNIQ*/1+/*MEM*/1+/*CTRL*/1)
/* inst check macros, activated if NO_ICHECKS is not defined (default) */
#ifndef NO_ICHECKS
/* instruction failure notification macro, this can be defined by the
target simulator if, for example, the simulator wants to handle the
instruction fault in a machine specific fashion; a string describing
the instruction fault is passed to the IFAIL() macro */
#ifndef IFAIL
#define IFAIL(S) fatal(S)
#endif /* IFAIL */
/* check for overflow in X+Y, both signed */
#define OVER(X,Y) (((((X) > 0) && ((Y) > 0) \
&& (MAXINT_VAL - (X) < (Y))) \
? IFAIL("+ overflow") : (void)0), \
((((X) < 0) && ((Y) < 0) \
&& (-MAXINT_VAL - (X) > (Y))) \
? IFAIL("+ underflow") : (void)0))
/* check for underflow in X-Y, both signed */
#define UNDER(X,Y) (((((X) > 0) && ((Y) < 0) \
&& (MAXINT_VAL + (Y) < (X))) \
? IFAIL("- overflow") : (void)0), \
((((X) < 0) && ((Y) > 0) \
&& (-MAXINT_VAL + (Y) > (X))) \
? IFAIL("- underflow") : (void)0))
/* check for divide by zero error, N is denom */
#define DIV0(N) (((N) == 0) ? IFAIL("divide by 0") : (void)0)
/* check reg specifier N for required double integer word alignment */
#define INTALIGN(N) (((N) & 01) \
? IFAIL("bad INT register alignment") : (void)0)
/* check reg specifier N for required double FP word alignment */
#define FPALIGN(N) (((N) & 01) \
? IFAIL("bad FP register alignment") : (void)0)
/* check target address TARG for required jump target alignment */
#define TALIGN(TARG) (((TARG) & 0x7) \
? IFAIL("bad jump alignment") : (void)0)
#else /* NO_ICHECKS */
/* inst checks disables, change all checks to NOP expressions */
#define OVER(X,Y) ((void)0)
#define UNDER(X,Y) ((void)0)
#define DIV0(N) ((void)0)
#define INTALIGN(N) ((void)0)
#define FPALIGN(N) ((void)0)
#define TALIGN(TARG) ((void)0)
#endif /* NO_ICHECKS */
/* default division operator semantics, this operation is accessed through a
macro because some simulators need to check for divide by zero faults
before executing this operation */
#define IDIV(A, B) ((A) / (B))
#define IMOD(A, B) ((A) % (B))
#define FDIV(A, B) ((A) / (B))
#define FINT(A) ((int)A)
#endif