-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplit_data_set.py
executable file
·55 lines (42 loc) · 2.93 KB
/
split_data_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gc
import pandas as pd
import numpy as np
import os
if __name__ == '__main__':
path = "data"
folds = 1
aisles = pd.read_csv(os.path.join(path, "aisles.csv"), dtype={'aisle_id': np.uint8, 'aisle':'category'})
departments = pd.read_csv(os.path.join(path, "departments.csv"), dtype={'department_id':np.uint8, 'department': 'category'})
order_prior = pd.read_csv(os.path.join(path, "order_products__prior.csv"), dtype={'order_id': np.uint32,
'product_id': np.uint16,
'add_to_cart_order':np.uint8,
'reordered': bool})
order_train = pd.read_csv(os.path.join(path, "order_products__train.csv"), dtype={'order_id': np.uint32,
'product_id': np.uint16,
'add_to_cart_order':np.uint8,
'reordered': bool})
orders = pd.read_csv(os.path.join(path, "orders.csv"), dtype={'order_id':np.uint32,
'user_id': np.uint32,
'eval_set': 'category',
'order_number':np.uint8,
'order_dow': np.uint8,
'order_hour_of_day': np.uint8
})
products = pd.read_csv(os.path.join(path, "products.csv"), dtype={'product_id': np.uint16,
'aisle_id': np.uint8,
'department_id': np.uint8})
labels = pd.read_pickle('data/previous_products.pkl')
orders = orders.loc[(orders.eval_set == 'train') | (orders.eval_set == 'test'), :]
labels = pd.merge(labels, orders[['order_id', 'user_id', 'eval_set']], on='user_id').drop(['user_id'], axis=1)
order_train.drop(['add_to_cart_order'], axis=1, inplace=True)
print('data is loaded')
orders = np.unique(labels.order_id)
size = orders.shape[0] // folds
for fold in range(folds):
current = orders[fold * size:(fold + 1) * size]
current = labels.loc[np.in1d(labels.order_id, current), :]
current = pd.merge(order_train, current, on=['order_id', 'product_id'], how='right')
current.reordered.fillna(False, inplace=True)
print(current.columns)
print(current.shape)
current.to_pickle('data/chunk_{}.pkl'.format(fold))