-
Notifications
You must be signed in to change notification settings - Fork 6
/
data_engineering.py
executable file
·645 lines (570 loc) · 25.5 KB
/
data_engineering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import math
from sklearn import preprocessing
from sklearn import metrics
import keras
from keras.models import Sequential
from keras.models import load_model
from keras.layers import Activation, Dense
from keras.layers import LSTM
from matplotlib import pyplot
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import requests
from bs4 import BeautifulSoup as bs
import io
from datetime import datetime, timedelta
import re
import statsmodels.tsa.api as smt
import statsmodels.api as sm
import scipy.stats as scs
import warnings
warnings.filterwarnings('ignore')
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from math import sqrt
from sklearn.metrics import make_scorer
from sklearn.model_selection import cross_val_score
### GET DATA ##################################################################
header = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36",
"X-Requested-With": "XMLHttpRequest"
} # header illusion...
def current_GLD():
"""Returns float USD amount of SPDR GLD ETF from business insider.com"""
url = 'http://markets.businessinsider.com/etfs/spdr-gold-shares'
my_req = requests.get(url, headers=header)
my_soup = bs(my_req.content, "html.parser")
t = my_soup.find_all('span', {"class": "aktien-big-font text-nowrap"})
val_data = re.findall("\d+\.\d+", str(t)) # extract digits
return float(val_data[0]) # convert to float
def get_SPDRGLD():
"""Returns pandas df with datetime index, GLD price, and LMBA prices"""
url = 'http://www.spdrgoldshares.com/assets/dynamic/GLD/GLD_US_archive_EN.csv'
my_req = requests.get(url, headers=header) # pull down csv from sp
gld_hist = pd.read_csv(io.StringIO(my_req.content.decode('utf-8')),
skiprows=6, # clean up columns
parse_dates=True,
index_col="Date")
gld_hist.index.rename('date', inplace=True) # match index to cccagg
gld_hist = gld_hist[[' GLD Close', ' LBMA Gold Price',
' Total Net Asset Value in the Trust']]
# strip out $ sign
gld_hist.loc[:, gld_hist.columns.values[1]] = \
gld_hist[gld_hist.columns[1]].str.replace('$', '')
# NA replace + ffill
gld_hist.replace(' HOLIDAY', np.NaN, inplace=True)
gld_hist.replace(' NYSE Closed', np.NaN, inplace=True)
gld_hist.replace(' AWAITED', np.NaN, inplace=True)
gld_hist = gld_hist.fillna(method='ffill')
gld_hist = gld_hist.rename(columns={ # clean column names
gld_hist.columns.values[0]: 'GLD_close',
gld_hist.columns.values[1]: 'LMBA_price',
gld_hist.columns.values[2]: 'GLD_market_cap'})
# convert to float values
gld_hist["GLD_close"] = gld_hist.GLD_close.astype(float)
gld_hist["LMBA_price"] = gld_hist.LMBA_price.astype(float)
gld_hist["GLD_market_cap"] = gld_hist.GLD_market_cap.astype(float)
# get current GLD prices
new_entry = pd.DataFrame.from_dict({pd.to_datetime(datetime.now()): {
"GLD_close": current_GLD(), # reuse yestdy's LMBA price
"LMBA_price": gld_hist.iloc[-1][1],
"GLD_market_cap": gld_hist.iloc[-1][2]
}}, orient='index')
new_entry.index.rename('date', inplace=True) # name index like gld_hist
return gld_hist.append(new_entry) # add new_entry, return
def get_sp500():
""" Pull Daily Historical S&P500 from FRED https://fred.stlouisfed.org"""
link = "https://fred.stlouisfed.org/data/SP500.txt"
my_req = requests.get(link, headers=header)
sp500 = pd.read_table(io.StringIO(my_req.content.decode('utf-8')),
parse_dates=True,
index_col='DATE',
dtype={'VALUE': np.float64},
delim_whitespace=True,
na_values='.',
skiprows=43)
sp500.rename(columns = {'VALUE':'SP500'}, inplace=True)
sp500 = sp500.reindex(sp500.index.rename('date'))
return(sp500)
def get_crypto(symb, yrs):
""" for pulling 'yrs' of data from Cryptocompare API"""
c_daily = "https://min-api.cryptocompare.com/data/histoday"
param = {'fsym': symb, 'tsym': 'USD',
'e': 'CCCAGG', 'limit': round(yrs*365)} # x years
t = requests.get(c_daily, param).json()['Data']
ck = pd.DataFrame.from_dict(t)
date_in = pd.to_datetime(ck.time, unit='s',
origin='unix')
ck['date'] = date_in
ck.index = date_in
ck.index.rename('date', inplace=True)
ck = ck.query('volumefrom != 0')
ck = ck[['close', 'volumeto']]
ck = ck.assign(btc_close = ck.close)
ck = ck.assign(btc_volume =ck.volumeto)
return ck[['btc_close', 'btc_volume']]
def get_volume():
"""For obtaining crypto volume"""
cols = ['date', 'timestamp', 'volume']
limit = 1800
url = "https://min-api.cryptocompare.com/data/exchange/histoday?tsym=USD&limit=" + \
str(limit)
t = requests.get(url).json()['Data']
data = pd.DataFrame.from_dict(t)
date_in = pd.to_datetime(data.time, unit='s',
origin='unix')
data['date'] = date_in
data.index = date_in
data.index.rename('date', inplace=True)
data = data.assign(crypto_volume = data.volume)
return data[['crypto_volume']]
def combined_data(coin, yrs):
"""Combines features with crypto data"""
cry = get_crypto(coin, yrs)
gld = get_SPDRGLD()
sp5 = get_sp500()
vol = get_volume()
df = cry.join(gld,how='outer').fillna(method='ffill')
df = df.join(sp5, how='outer').fillna(method='ffill')
df = df.join(vol, how ='outer').fillna(method='ffill')
df = df.dropna()
return df
### FEATURE ENGINEERING ######################################################
def rate_of_change(data):
# rate of change
data["btc_close_roc"] = np.gradient(data['btc_close'])
data["btc_volume_roc"] = np.gradient(data['btc_volume'])
data["crypto_volume_roc"] = np.gradient(data['crypto_volume'])
data["gold_close_roc"] = np.gradient(data['GLD_close'])
data["lmba_gold_roc"] = np.gradient(data['LMBA_price'])
data["gold_volume_roc"] = np.gradient(data['GLD_market_cap'])
data["SP500_roc"] = np.gradient(data['SP500'])
return data
def parse_date(data):
# parse date into year, month, week, day, dayofweek
data["year"] = data.index.year
data['month'] = data.index.month
data['week'] = data.index.week
data['day'] = data.index.day
data['dayofweek'] = data.index.dayofweek
return data
def get_dummies(data):
# day of week
dayofweek_dummies = pd.get_dummies(data['dayofweek'], prefix='dayofweek')
data = pd.concat([data, dayofweek_dummies], axis=1)
# year
year_dummies = pd.get_dummies(data['year'], prefix='year')
data = pd.concat([data, year_dummies], axis=1)
# month
month_dummies = pd.get_dummies(data['month'], prefix='month')
data = pd.concat([data, month_dummies], axis=1)
data.drop('year', axis=1, inplace=True)
data.drop('month', axis=1, inplace=True)
data.drop('dayofweek', axis=1, inplace=True)
return (data)
def add_feats(x):
"""Function to add all kinds of calculated columns"""
# 1-day Log Returns
x = x.assign(gld_lr=np.log(x.GLD_close / x.GLD_close.shift(1)))
x = x.assign(gmc_lr=np.log(x.GLD_market_cap / x.GLD_market_cap.shift(1)))
x = x.assign(sp5_lr=np.log(x.SP500 / x.SP500.shift(1)))
x = x.assign(crv_lr=np.log(x.crypto_volume / x.crypto_volume.shift(1)))
# BTC Stats...
x = x.assign(btcMA3=x.rolling(3).mean().btc_close) # rolling mean, std
x = x.assign(btcMA5=x.rolling(5).mean().btc_close)
x = x.assign(btcMA10=x.rolling(10).mean().btc_close)
x = x.assign(btcMA20=x.rolling(20).mean().btc_close)
# x = x.assign(btcSD5 = x.rolling(5).std().btc_close)
# Gold Stats...
x = x.assign(gldMA2=x.rolling(2).mean().GLD_close)
x = x.assign(gldMA5=x.rolling(5).mean().GLD_close)
x = x.assign(gldMA10=x.rolling(10).mean().GLD_close)
x = x.assign(gldMA20=x.rolling(20).mean().GLD_close)
# x = x.assign(gldSD5 = x.rolling(5).std().GLD_close)
# response vars...
x = x.assign(btc_lr=np.log(x.btc_close / x.btc_close.shift(1)))
x = x.assign(btv_lr=np.log(x.btc_volume / x.btc_volume.shift(1)))
x = x.assign(btc_lg1p=np.log1p(x.btc_close)).dropna() # log of price
return(x)
def get_combined_data():
"""Function that adds all columns for model-building"""
data = combined_data('BTC', 5)
# static = data.copy()
# data = static.copy()
data = parse_date(data)
data = get_dummies(data)
data = rate_of_change(data)
data = add_feats(data)
return data
### DIAGNOSTICS ###############################################################
def rmse(actual, predict):
"""Root Mean Square Error"""
predict = np.array(predict)
actual = np.array(actual)
mse = mean_squared_error(actual, predict)
rmse = sqrt(mse)
return rmse
def rmsle(actual, predict):
"""Root Mean Square Log Error"""
predict = np.array(predict)
actual = np.array(actual)
log_predict = np.log(predict + 1)
log_actual = np.log(actual + 1)
diff = log_predict - log_actual
square_diff = np.square(diff)
msd = square_diff.mean()
score = np.sqrt(msd)
return score
def my_crossval(rfm, X_train, y_train, m_name=""):
"""Score the models"""
# feature importance
# importance = sorted(zip(map(lambda x: round(x, 4), rfm.feature_importances_),
# feature_names), reverse=True)
rf_cv_rmsle_score = cross_val_score(rfm, X_train, y_train ,
cv = 5, scoring = rmsle_score).mean()
# rf_cv10_rmsle_score = cross_val_score(rfm, X_train, y_train,
# cv=10,scoring=rmse_score).mean()
pred = rfm.predict(X=X_train)
rf_rmse = rmse(y_train, pred)
print("RMSLE CV Score: {0:.5f}".format(rf_cv_rmsle_score))
# print("RMSLE CV20 Score: {0:.5f}".format(rf_cv10_rmsle_score))
print("RMSE Value: {0:.5f}".format(rf_rmse))
scores = {m_name: {"RMSLE": rf_cv_rmsle_score,
# "RMSLE CV10": rf_cv10_rmsle_score,
"RMSE": rf_rmse}}
score_df = pd.DataFrame.from_dict(scores, orient='index')
return score_df
### PLOTS #####################################################################
def tsplot(y, lags=None, figsize=(8, 6), n = ""):
""" Plot for reviewing stationarity (or lack thereof) in a series
Mix of plots from DataCamp and http://www.blackarbs.com/"""
fig = plt.figure(figsize=figsize)
layout = (3, 2)
ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
acf_ax = plt.subplot2grid(layout, (1, 0))
pacf_ax = plt.subplot2grid(layout, (1, 1))
qq_ax = plt.subplot2grid(layout, (2, 0))
pp_ax = plt.subplot2grid(layout, (2, 1))
y.plot(ax=ts_ax)
ts_ax.set_title('Time Series Plots %s' % n)
smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.5)
smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.5)
sm.qqplot(y, line='s', ax=qq_ax)
qq_ax.set_title('QQ Plot')
scs.probplot(y, sparams=(y.mean(), y.std()), plot=pp_ax)
plt.tight_layout()
plt.close()
return
def act_v_predict_plot(rfm_preds, y_test, days):
"""Plot time-series, in order of prediction vs actual"""
plt.clf()
rvw_results = pd.DataFrame(
{"actual": y_test.values, "predicted": rfm_preds}, index=y_test.index)
rvw_results.sort_index(inplace=True)
n_days = days
smaller = rvw_results[
(datetime.utcnow().date() - timedelta(days=n_days)).isoformat():]
plt.plot(smaller.index, smaller.actual, '-', color='blue', label="Actual")
plt.plot(smaller.index, smaller.predicted, '--', color='green',
label=('Predicted'))
plt.legend(['Actual', 'Predicted'], loc='best')
plt.grid('on', which='major', linestyle='--', alpha=.5, color='gray')
plt.title("Actual vs. Prediction: {0} days".format(n_days))
plt.xticks(rotation=30)
plt.show()
def pred_vs_act_sca(preds, y_test):
"""A plot to review how prediction compares w/ actual via scatter"""
plt.clf()
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(y_test, preds, c='b', marker='x', label='Actual', alpha =.5)
ax.scatter(preds, y_test, c='g', marker='s', label='Predicted', alpha =.5)
plt.legend(loc='best')
plt.title('Actual vs. Predicted')
plt.show()
### MODEL PREPERATION #########################################################
def label_and_feat(data, tag):
"""for assigning response + features for models"""
if tag == 'r':
label_name = 'btc_close'
feature_names = list(data.columns[1:len(data.columns)])
else:
label_name = 'btc_close'
feature_names = list(data.columns[2:len(data.columns)-3])
print("*" * 75)
print("Modeling: {0}".format(label_name))
print("Features Include:")
for i in range(round(len(feature_names) / 10) + 1):
print(", ".join(feature_names[i * 10:(i + 1) * 10]))
print("*" * 75)
return label_name, feature_names
def prep_data(data, tag):
"""Select columns of interest for 3 models"""
# Select features, response
if tag == 'j':
col_nam = ['btc_close', 'btc_volume', 'GLD_close', 'GLD_market_cap',
'SP500','crypto_volume', 'week', 'day',
'dayofweek_0', 'dayofweek_1', 'dayofweek_2', 'dayofweek_3',
'dayofweek_4', 'dayofweek_5', 'dayofweek_6', 'year_2015',
'year_2016', 'year_2017', 'year_2018', 'year_2019', 'year_2020',
'month_1', 'month_2', 'month_3', 'month_4',
'month_5', 'month_6', 'month_7', 'month_8', 'month_9',
'month_10', 'month_11', 'month_12',
'gld_lr', 'gmc_lr', 'sp5_lr', 'crv_lr', 'gldMA2', 'gldMA5',
'gldMA10','gldMA20','btcMA3', 'btcMA5','btcMA10','btcMA20',
'btc_lr','btv_lr', 'btc_lg1p']
elif tag == 'r':
col_nam = ['btc_close', 'btc_volume', 'GLD_close', 'LMBA_price',
'GLD_market_cap', 'SP500', 'crypto_volume', 'btc_close_roc',
'btc_volume_roc', 'crypto_volume_roc', 'gold_close_roc',
'lmba_gold_roc', 'gold_volume_roc', 'SP500_roc', 'dayofweek_0',
'dayofweek_1', 'dayofweek_2', 'dayofweek_3', 'dayofweek_4',
'dayofweek_5', 'dayofweek_6', 'year_2015',
'year_2016', 'year_2017', 'year_2018', 'year_2019', 'year_2020',]
else:
col_nam = ['btc_close', 'GLD_close']
return(data[col_nam].copy())
def get_minmax_params(rf_scores):
"""Used to obtain the parameters for refinement of RandomForest Model"""
mnmxd = np.min(rf_scores.max_depth)
mxmxd = np.max(rf_scores.max_depth)
mnmxft = np.min(rf_scores.max_features)
mxmxft = np.max(rf_scores.max_features)
return mnmxd, mxmxd, mnmxft, mxmxft
### LSTM OBJECT ###############################################################
class PredictionModel(object):
"""And object for fitting and scoring LSTM models"""
def __init__(self, df, scaling=False):
self.model = None
self.scaler = None
new_df = df[["btc_close", "GLD_close"]].copy()
# Take the difference so we train only on price
# fluctuations, not raw prices.
# df = df.diff()
new_df.dropna(inplace=True)
if scaling:
scaler = preprocessing.RobustScaler()
new_df[["btc_close",
"GLD_close"]] = scaler.fit_transform(new_df[["btc_close",
"GLD_close"]])
self.scaler = scaler
print("Shape of df is {0}" .format(new_df.shape))
self.df = new_df
return
def series_to_supervised(self, df, timesteps=1, lag=1):
"""timesteps is size of time window used for prediction
lag is time interval after which it predicts
"""
# Perform the reshaping for time series.
# input sequence, count down
col3 = list()
for i in range(timesteps, 0, -1):
col3.append(df.shift(i))
# forecast sequence
col4 = list()
df_target = df[["btc_close"]]
for i in range(0, lag):
col4.append(df_target.shift(-i))
dfx = pd.concat(col3, axis=1)
dfy = pd.concat(col4, axis=1)
# Drop the first few rows from BOTH which will have nans
dfx = dfx.iloc[timesteps:]
dfy = dfy.iloc[timesteps:]
return dfx, dfy
def train_lstm(self, timesteps=1, write_model=False):
print("Training LSTM model for BTC")
# 1. Create and compile the Model.
lag = 1
v1, v2 = self.series_to_supervised(self.df, timesteps=timesteps, lag=lag)
values_X, values_Y = v1.values, v2.values
n_features = self.df.shape[1]
total = len(values_Y)
train_size = int(total * 0.8)
mult = timesteps * n_features
train_size -= (train_size % mult)
test_size = total - train_size
test_size -= (test_size % mult)
train_X = values_X[:train_size, :]
test_X = values_X[train_size:, :]
train_Y = values_Y[:train_size, :]
test_Y = values_Y[train_size:, :]
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], timesteps, n_features))
test_X = test_X.reshape((test_X.shape[0], timesteps, n_features))
print(train_X.shape, train_Y.shape, test_X.shape, test_Y.shape)
model = Sequential()
neurons = 512
model.add(LSTM(neurons, return_sequences=True,
input_shape=(timesteps, train_X.shape[2])))
model.add(keras.layers.Flatten())
output_size = 1
model.add(Dense(units=output_size))
model.add(Activation("linear"))
model.compile(loss="mae", optimizer="adam")
print(model.summary())
x_train, x_test = train_X[
0:train_size, :], train_X[train_size:total, :]
y_train = train_Y[0:train_size, :]
# y_test = train_Y[train_size:total, :]
# 2. Train the Model.
history = model.fit(x_train, y_train, epochs=16, batch_size=8, \
verbose=2, validation_data=(test_X, test_Y))
# plot history
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='test')
pyplot.legend()
#pyplot.show()
# 3. Save the Model.
if write_model:
model.save("btc_lstm_model.h5")
self.model = model
return test_X, test_Y
def lstm_predict(self, test_X, test_y, timesteps):
""" Predict future price using trained LSTM network in Keras """
# make a prediction
yhat = self.model.predict(test_X)
test_X = test_X.reshape((test_X.shape[0], timesteps, test_X.shape[2]))
# drop the timesteps dimension
test_X = test_X[:,0,:]
# invert scaling for forecast
inv_yhat = np.concatenate((yhat, test_X[:, 1:]), axis=1)
if self.scaler is not None:
inv_yhat = self.scaler.inverse_transform(inv_yhat)
inv_yhat = inv_yhat[:,0]
# invert scaling for actual
test_y = test_y.reshape((len(test_y), 1))
inv_y = np.concatenate((test_y, test_X[:, 1:]), axis=1)
if self.scaler is not None:
inv_y = self.scaler.inverse_transform(inv_y)
inv_y = inv_y[:,0]
# calculate RMSE
rmse = math.sqrt(metrics.mean_squared_error(inv_y, inv_yhat))
return rmse
def load_lstm_model(self, savemodel=False):
self.model = load_model("btc_lstm_model.h5")
return
def timetodate(timestamp):
return datetime.fromtimestamp(int(timestamp)).strftime('%Y-%m-%d')
def datetotime(date):
return datetime.strptime(date, '%Y-%m-%d').timestamp()
### RANDOM FORREST ############################################################
def my_testTrain_split(data, feature_names, label_name):
"""create test/train split of data based on model"""
X = data[feature_names] # features
y = data[label_name] # response
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
return X_train, X_test, y_train, y_test
# necessary definitions for scoring
rmsle_score = make_scorer(rmsle)
rmse_score = make_scorer(rmse)
def my_randomForest(X_train, y_train, mn_d=1, mx_d=100,
mn_ft=0.1, mx_ft=1.0, eps=10):
"""Try different model fits to obtain model params, return df of scores"""
chpl = pd.DataFrame()
num_epoch = eps
n_estimators = 100
mxd, mxft, scr = [], [], []
for epoch in range(num_epoch):
max_depth = int(np.random.uniform(mn_d, mx_d))
max_features = np.random.uniform(mn_ft, mx_ft)
model = RandomForestRegressor(n_estimators=n_estimators,
max_depth=max_depth,
max_features=max_features,
n_jobs=-1,
random_state=37)
score = cross_val_score(model,
X_train, y_train,
cv=20, scoring=rmsle_score).mean()
print(
"max_depth = {0}, max_features = {1:.6f}, score = {2:.5f}".format(
max_depth,
max_features,
score))
mxd.append(max_depth)
mxft.append(max_features)
scr.append(score)
chpl = chpl.assign(
**{'max_depth': mxd, 'max_features': mxft, 'score': scr})
chpl.sort_values("score", ascending=True, inplace=True)
return(chpl)
def fit_RF(n_estimators, max_depth, max_features, X, y):
"""Fit RF to X, y, return fitted RandomForrest Model, return rf object"""
rfm = RandomForestRegressor(n_estimators=n_estimators,
max_depth=max_depth,
max_features=max_features,
n_jobs=-1,
random_state=23)
rfm.fit(X, y)
return rfm
### LSTM MODEL RUN ############################################################
def run_lstm(data):
timesteps = 16
pred = PredictionModel(data, scaling=True)
x_test, y_test = pred.train_lstm(timesteps=timesteps, write_model=True)
rmse = pred.lstm_predict(x_test, y_test, timesteps=timesteps)
print('RMSE of LSTM predictions: %.3f' % rmse)
return pred
### START TABLE-SETTINGS ######################################################
# rmsle_score = make_scorer(rmsle)
# rmse_score = make_scorer(rmse)
# core_data = get_combined_data()
#
# ### END TABLE-SETTINGS #######################################################
#
# ### Random Forest Model I ####################################################
# data_r = prep_data(core_data, 'r')
# label_name, feature_names = label_and_feat(data_r, 'r')
# X_train, X_test, y_train, y_test = my_testTrain_split(data_r, feature_names,
# label_name)
#
# fst_pass = my_randomForest(X_train, y_train) # 10 epochs is default
# mnmxd, mxmxd, mnmxft, mxmxft = get_minmax_params(fst_pass) # refined params
# refined = my_randomForest(X_train, y_train,
# mnmxd, mxmxd, mnmxft, mxmxft, 5)
# refined = refined.iloc[refined.score.idxmin(), :] #obtain min score
# rfm = fit_RF(3000,refined.max_depth,refined.max_features, X_train, y_train)
# scores = my_crossval(rfm, X_train, y_train, "r-forrest")
#
# rfm_preds = rfm.predict(X_test)
# rfm_preds[:10]
# y_test[:10].values
# act_v_predict_plot(rfm_preds, y_test, 60)
#
# ### Random Forest Model II ####################################################
# data_j = prep_data(core_data, 'j')
# label_name, feature_names = label_and_feat(data_j, 'j')
# X_train, X_test, y_train, y_test = my_testTrain_split(data_j, feature_names,
# label_name)
#
# fst_pass = my_randomForest(X_train, y_train) # 10 epochs is default
# mnmxd, mxmxd, mnmxft, mxmxft = get_minmax_params(fst_pass) # refined params
# refined = my_randomForest(X_train, y_train,
# mnmxd, mxmxd, mnmxft, mxmxft, 5)
# refined = refined.iloc[refined.score.idxmin(), :] #obtain min score
# rfm = fit_RF(3000,refined.max_depth,refined.max_features, X_train, y_train)
# scores = my_crossval(rfm, X_train, y_train, "j-forrest")
#
# rfm_preds = rfm.predict(X_test)
# rfm_preds[:10]
# y_test[:10].values
# act_v_predict_plot(rfm_preds, y_test, 60)
#
# print("Features sorted by their score:")
# print(sorted(zip(map(lambda x: round(x, 4), rfm.feature_importances_),
# feature_names), reverse=True))
#
# ### LSTM Model ################################################################
# data = prep_data(core_data, 'v')
# def run_lstm(data):
# timesteps = 16
# pred = PredictionModel(data, scaling=True)
# x_test, y_test = pred.train_lstm(timesteps=timesteps, write_model=True)
# rmse = pred.lstm_predict(x_test, y_test, timesteps=timesteps)
# print('RMSE of LSTM predictions: %.3f' % rmse)
# return pred
#
# data = prep_data(core_data, 'v')
# lstm = run_lstm(data)