forked from trekhleb/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
dpUniquePaths.js
40 lines (37 loc) · 1.46 KB
/
dpUniquePaths.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
* DYNAMIC PROGRAMMING approach of solving Unique Paths problem.
*
* @param {number} width - Width of the board.
* @param {number} height - Height of the board.
* @return {number} - Number of unique paths.
*/
export default function dpUniquePaths(width, height) {
// Init board.
const board = Array(height).fill(null).map(() => {
return Array(width).fill(0);
});
// Base case.
// There is only one way of getting to board[0][any] and
// there is also only one way of getting to board[any][0].
// This is because we have a restriction of moving right
// and down only.
for (let rowIndex = 0; rowIndex < height; rowIndex += 1) {
for (let columnIndex = 0; columnIndex < width; columnIndex += 1) {
if (rowIndex === 0 || columnIndex === 0) {
board[rowIndex][columnIndex] = 1;
}
}
}
// Now, since we have this restriction of moving only to the right
// and down we might say that number of unique paths to the current
// cell is a sum of numbers of unique paths to the cell above the
// current one and to the cell to the left of current one.
for (let rowIndex = 1; rowIndex < height; rowIndex += 1) {
for (let columnIndex = 1; columnIndex < width; columnIndex += 1) {
const uniquesFromTop = board[rowIndex - 1][columnIndex];
const uniquesFromLeft = board[rowIndex][columnIndex - 1];
board[rowIndex][columnIndex] = uniquesFromTop + uniquesFromLeft;
}
}
return board[height - 1][width - 1];
}