forked from rodralez/NaveGo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gravity.m
executable file
·66 lines (56 loc) · 1.95 KB
/
gravity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
function g_n = gravity(lat, h)
% gravity: calculates gravity vector in the navigation frame.
%
% INPUT:
% lat: Mx1 latitude (radians).
% h: Mx1 altitude (m).
%
% OUTPUT:
% g_n: Mx1 gravity vector in the nav-frame (m/s^2).
%
% Copyright (C) 2014, Rodrigo Gonzalez, all rights reserved.
%
% This file is part of NaveGo, an open-source MATLAB toolbox for
% simulation of integrated navigation systems.
%
% NaveGo is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License (LGPL)
% version 3 as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this program. If not, see
% <http://www.gnu.org/licenses/>.
%
% References:
% Titterton, D.H. and Weston, J.L. (2004). Strapdown
% Inertial Navigation Technology (2nd Ed.). Institution
% of Engineering and Technology, USA. Eq. 3.89-3.91.
%
% R. Gonzalez, J. Giribet, and H. Patiño. An approach to
% benchmarking of loosely coupled low-cost navigation systems,
% Mathematical and Computer Modelling of Dynamical Systems, vol. 21,
% issue 3, pp. 272-287, 2015. Eq. 16.
%
% Version: 004
% Date: 2019/01/09
% Author: Rodrigo Gonzalez <[email protected]>
% URL: https://github.com/rodralez/navego
% Set gravity uncertainty
% a = 9.81 * 0.1;
% b = 9.81 * 0.1;
% g_noise = (b-a).*rand(1) + a;
h = abs(h);
sin1 = sin(lat);
sin2 = sin(2.*lat);
g0 = 9.780318 * ( 1 + 5.3024e-03.*(sin1).^2 - 5.9e-06.*(sin2).^2 );
[RM,RN] = radius(lat);
Ro = sqrt(RN .* RM);
g = (g0 ./ (1 + (h ./ Ro)).^2);
Z = zeros(size(lat));
g_n = [Z Z g];
end